

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Air Motors

P1V-A Power Type: 1.6, 2.6 & 3.6 kW P1V-B Power Type: 5.1, 9 & 18 kW

Catalogue PDE2670TCUK November 2014

Features	Air motor	Hydraulic motor	Electric motor
Overload safe	***	***	*
Increased torque at higher loads	***	**	*
Easy to limit torque	***	***	*
Easy to vary speed	***	***	*
Easy to limit power	***	***	*
Reliability	***	***	***
Robustness	***	***	*
Installation cost	***	*	**
Ease of service	***	**	*
Safety in damp environments	***	***	*
Safety in explosive atmospheres	***	***	*
Safety risk with electrical installations	***	***	*
Risk of oil leak	***	*	***
Hydraulic system required	***	*	***
Weight	**	***	*
Power density	**	***	*
High torque for size	**	***	*
Noise level during operation	*	***	**
Total energy consumption	*	**	***
Service interval	*	**	***
Compressor capacity required	*	***	***
Purchase price	*	*	***

^{* =} good, **=average, ***=excellent

Important

Before carrying out service activities, make sure the air motor is vented. Before disassembling the motor, disconnect the primary air hose to ensure that the air supply is interrupted.

Note

All technical data in the catalogue are typical values.

The air quality is a major factor in the service life of the motor, see ISO 8573-1.

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

SALE CONDITIONS

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered into by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

P1V-A & B Air Motors

Contents

General

The steps to size Principles of air motors Introduction	5
Air quality & Lubrification	
Large Air Motors P1V-A	13 - 47
Very Large Air Motors P1V-R	<i>1</i> 8 - 51

P1V-A & B Air Motors

Choosing the correct air motor for your application

1 Which drive principle of the air motor is suitable for your application?

- Air vane motor are suitable for regular operating cycles, speed is very small e.g. 16 rpm
- Tooth gear air motor or turbines are more suitable for continuous operation, 24 hours non-stop, speed is in a upper range, up to 140,000 rpm
- Oil free operation is often an option for these three principles of air motors.

Which motor materials are suitable for your application?

- Will the air motor work in a normal production area
- Or in a paper industry
- Or in the food processing industry, in contact or not with food
- Or in underwater usage
- Or in the medical, pharmaceutical industries
- Or in potentially explosive areas
- Others, please describe your environment

How do you calculate the motor power taking the application conditions into consideration?

- 1. Which rotational direction? Clockwise, anti-clockwise, reversible?
- 2. Air pressure working range? Which air class quality is available?
- 3. Which torque and which speed under load do you expect to obtain?
- 4. Calculate the basic power with the formula

P = M x n / 9550 with P power output in kW, M nominal torque in Nm, n nominal speed in rpm

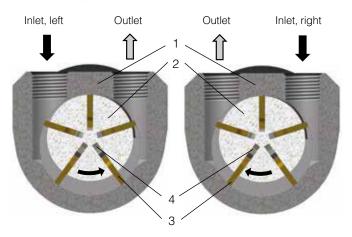
- 5. Check performance data of air motors in our catalogues. Note that all data is at 6 bar in the inlet of the air motor, max 3 meters for tubes and oil lubricated operations.
- 6. To adapt the difference of air pressure with your operation conditions, please check graphs in our catalogues and how to do it.
- 7. or you can adapt the need of air to fit your operation conditions by throttling the outlet flow in the air motor you will reduce speed without loss of torque.
- 8. Check if you need an oil free or not working operation. 1 to 2 drops of oil per cube meter are needed to optimize performance and life time of air motors. Oil free operation will decrease by 10 to 15% the performance of air motors.

4 How do you integrate your air motor in your system?

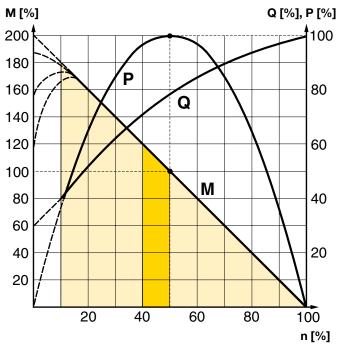
- In which position is the air motor used?
- Do you need to use a brake?
- Do you want to use your own gear box and put it somewhere else in the machine?
- Do you need extra components like fittings, tubes, valves and FRLs?

6 How do you ensure a long life and high performance of the air motor?

- Ensure you air quality is in accordance with our specifications, oil or oil free lubrication operations.
- Keep the recommended maintenance intervals


6 How do you determine the purchasing and running costs after the air motor installation?

- Keep same level of your air quality.


Principles of air motor functioning

5 1 2 5

- 1 Rotor cylinder
- 2 Rotor
- 3 Vanes
- 4 Spring
- 5 End piece with bearing

Torque, power and air consumption graphs

P = power

M = torque

Q = air consumption

n = speed

Possible working range of motor.

Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear

There are a number of designs of air motors. Parker has chosen to use the vane rotor design, because of its simple design and reliable operation. The small external dimensions of vane motors make them suitable for all applications.

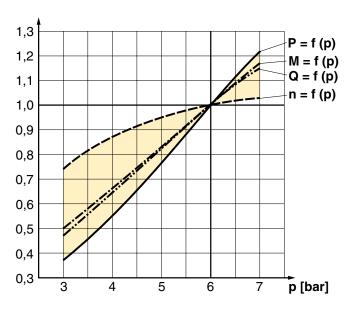
The principle of the vane motor is that a rotor with a number of vanes is enclosed in a rotor cylinder. The motor is supplied with compressed air through one connection and air escapes from the other connection. To give reliable starting, the springs press the vanes against the rotor cylinder. The air pressure always bears at right angles against a surface. This means that the torque of the motor is a result of the vane surfaces and the air pressure.

The performance characteristics of each motor are shown in a family of curves as above, from which torque, power and air consumption can be read off as a function of speed. Power is zero when the motor is stationary and also when running at free speed (100%) with no load. Maximum power (100%) is normally developed when the motor is driving a load at approximately half the free speed (50%).

Torque at free speed is zero, but increases as soon as a load is applied, rising linearly until the motor stalls. As the motor can then stop with the vanes in various positions, it is not possible to specify an exact torque. However, a minimum starting torque is shown in all tables.

Air consumption is greatest at free speed, and decreases with decreasing speed, as shown in the above diagram.

Introduction

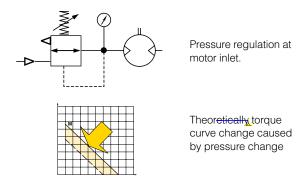

The performance of an air motor is dependent on the inlet pressure. At a constant inlet pressure, air motors exhibit the characteristic linear output torque / speed relationship. However, by simply regulating the air supply, using the techniques of throttling or pressure regulation, the output of an air motor can easily be modified. The most economical operation of an air motor (least wear, least air consumption, etc.) is reached by running close to nominal speed. By torque of M=0, the maximum speed (idle speed) is reached. Shortly before standstill (n - 0), the air motor reaches its maximum torque (Mmax = 2 x Mo). At nominal speed (nn), for example in the middle of the speed range, air motor reaches its maximum power output (Pmax).

Energy Efficiency

A pneumatic motor achieves its maximum power when it is operating as close as possible to its rated speed (50% of the rated idle speed). The energy balance is best in this area, because the compressed air is used efficiently.

Air pressure correction factors

To adapt the difference of air pressure with your operation conditions

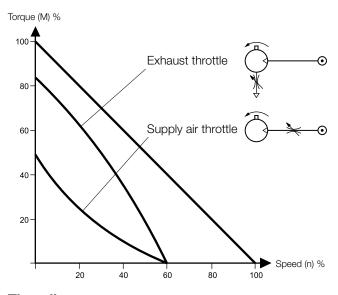

P = Power, M = Torque, Q = Air consumption, N = Speed

Pressure (p) bar / PSI	Power (P) %	Speed (n) %	Torque (M) %	Air Consumpt. (Q)
7 / 99	121	103	117	117
6 / 85	100	100	100	100
5/71	77	95	83	83
4 / 57	55	87	67	67
3 / 42	37	74	50	50

All catalogue data and curves are specified at a supply pressure of 6 bar to the motor. This diagram shows the effect of pressure on speed, specified torque, power and air consumption. Start off on the curve at the pressure used and then look up to the lines for power, torque and air consumption. Read off the correction factor on the Y axis for each curve and multiply this by the specified catalogue data in the table, or data read from the torque and power graphs.

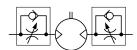
Example: at 4 bar supply pressure, the power is only 0.55 x power at 6 bar supply pressure. This example shows how strongly power falls if supply pressure is reduced. You must therefore ensure that the motor is supplied through pipes of sufficient diameter to avoid pressure drop.

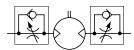
The speed and torque can also be regulated by installing a pressure regulator in the inlet pipe. This means that the motor is constantly supplied with air at lower pressure, which means that when the motor is braked, it develops a lower torque on the output shaft.



Speed regulation, air flow reduction

Every size reduction or restriction on the air line, whether of the supply hose itself or fittings, before the air motor affects the amount of the supplied air. By throttling you reduce the speed of your motor and simultaneously, the required torque. That means that you reduce the motor performance. The most common way to reduce the speed of a motor is to install a flow control valve in the air outlet, you can set the speed without loss of the torque. When the motor is used in applications where it must reverse and it is necessary to restrict the speed in both directions. flow control valves with by-pass should be used in both directions. If the inlet air is restricted, the air supply is restricted and the free speed of the motor falls, but there is full pressure on the vanes at low speeds. This means that we get full torque from the motor at low speeds despite the low air flow. Since the torque curve becomes "steeper". this also means that we get a lower torque at any given speed than would be developed at full air flow. The benefit of throttling the inlet is that air consumption is reduced, whereas throttling the exhaust air maintains a slightly higher starting torque.

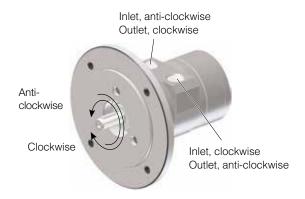

P1V-A & B Air Motors


Throttling

Supply or exhaust throttling, non-reversible motor

Supply throttling, reversible motor

Exhaust throttling, reversible motor



Torque curve change caused by throttling

Component choice for air supply

Direction of motor rotation

The direction of rotation of reversible motors is obtained by supplying inlet L or inlet R with compressed air. The motor can be stopped and started continually without damage occuring.

Reversible means in both directions.

Compressed air quality

Oil and oil mist are avoided whenever possible to ensure a clean work environment. In addition, purchasing, installation and maintenance of oil equipment can be expensive. All users in all industries now try to avoid using components which have to be lubricated. The P1V air motors series are equipped with vanes for intermittent lubrication free operation as standard, which is the most common application of air motors.

Oil mist

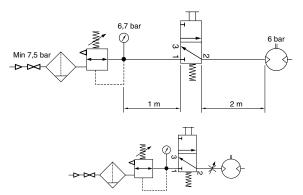
If oil mist is used (approx. 1 drop of oil per m³ of compressed air), the oil not only acts as a lubricant but also protects against corrosion. This means that compressed air with a certain water content may be used without causing corrosion problems inside the motor. ISO8573-1 purity class 3.-.5 may be used without difficulty. The following oils are recommended for use in the food stuffs industry: Klüberoil 4 UH 1-32

ISO 8573-1 purity classes

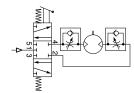
Quality class	Cor particle size (µm)	max. concentration (mg/m³)	Water max. pressure dew point (°C)	Oil max. concentration (mg.m³)
1	0.1	0.1	-70	0.01
2	1	1	-40	0.1
3	5	5	-20	1.0
4	15	8	+3	5.0
5	40	10	+7	25
6	-	-	+10	-

For example: compressed air to purity class 3.4.3. This means a 5 μ m filter (standard filter), dew point +3°C (refrigerant cooled) and an oil concentration of 1,0 mg oil/m³ (as supplied by a standard compressor with a standard filter).

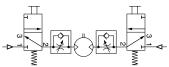
P1V-A & B Air Motors


Air supply

Since the supply pressure at the air motor inlet port is of considerable importance for obtaining the power, speed and torque quoted in the catalogue, the recommendations below should be observed.


The following data must be complied with:

- Supply pressure: 7 bar
- Regulator pressure setting: 6.7 bar
- Pipe length between air treatment unit and valve: max. 1 m
- Pipe length valve and air motor: max 2 m


The pressure drop through the air preparation unit, pipe, valve means that 6 bar pressure is obtained at the motor supply port. Please refer to the correction diagram and factors to see what lower supply pressure means for power, speed and torque.

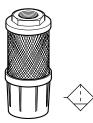
Shut-off, filtering, pressure regulation and control valve

Reversible motor with 5/3 control valve

Reversible motor with two 3/2 control valves

The air with which the motor is supplied must be filtered and regulated. Directional valves are needed to provide it with air, to get the motor to rotate when we want it to. These valves can be equipped with several means of actuation, such as electric, manual and pneumatic control. When the motor is used in a non-reversible application, it is sufficient to use a 2/2 or 3/2 valve function for supply. Either one 5/3 or two 3/2 valves functions are needed for a reversible motor, to ensure that the motor receives compressed air and the residual air outlet is vented. A flow control valve can be installed in the supply pipe to regulate the motor speed if the motor is not used as a reversible motor.

One flow control valve with by-pass is needed to regulate each direction of rotation if the motor is used as a reversible motor. The built-in check valve will then allow air from the residual air outlet to escape through the outlet port in the control valve. The compressed air supply must have sufficiently large pipes and valves to give the motor the maximum power. The motor needs 6 bar at the supply port all the time. For example, a reduction of pressure to 5 bar reduces the power developed to 77% and to 55% at 4 bar!


Silencing

Exhaust silencer

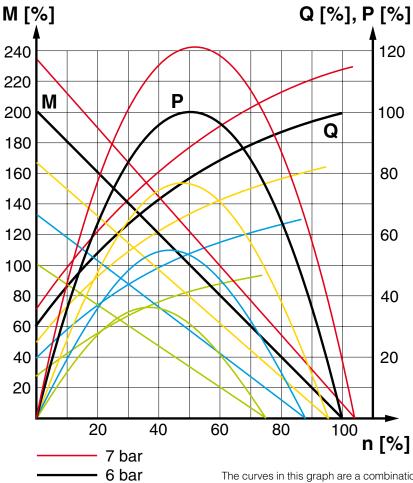
Central silencer

The noise from an air motor consists of both mechanical noise and a pulsating noise from the air flowing out of the outlet. The installation of the motor has a considerable effect on mechanical noise. It should be installed so that no mechanical resonance effects can occur. The outlet air creates a noise level which can amount to 115 dB(A) if the air is allowed to exhaust freely into the atmosphere. Various types of exhaust silencers are used to reduce this level. The most common type screws directly onto the exhaust port of the motor. Since the motor function causes the exhaust air to pulsate, it is a good idea to allow the air to exhaust into some kind of chamber first, which reduces the pulsations before they reach the silencer. The best silencing method is to connect a soft plastic hose to a large central silencer with the largest possible area, to reduce the speed of the outflowing air as far as possible.

NOTE! Remember that if a silencer which is too small or is blocked, generates back pressure on the outlet side of the motor, which reduces the motor power.

CE marking

The air motors are supplied as "Components for installation" – the installer is responsible for ensuring that the motors are installed safely in the overall system. Parker Pneumatic guarantees that its products are safe, and as a supplier of pneumatic equipment we ensure that the equipment is designed and manufactured in accordance with the applicable EU directive.


Most of our products are classed as components as defined by various directives, and although we guarantee that the components satisfy the fundamental safety requirements of the directives to the extent that they are our responsibility, they do not usually carry the CE mark.

The following are the currently applicable directives:

- Machinery Directive(essential health and safety requirements relating to the design and structure of machines and safety components)
- EMC Directive
- Simple Pressure Vessels Directive
- Low Voltage Directive

Torque, power and air consumption graphs

P = power Q = air consumption
M = torque n = speed

5 bar

4 bar

3 bar

The curves in this graph are a combination of the torque, power and air consumption graphs. The values from the correction diagram have also been used for the curves for the different pressure values. The graph also shows that is it very important to ensure that the pressure supplied to the inlet port of the motor is correct, in order to allow the motor to work at maximum capacity. If the valve supplying a large motor is too small or if the supply line is underspecified, the pressure at the inlet port may be so low that the motor is unable to do its work. One solution would be to upgrade the valve and supply system, or alternatively you could replace the motor with a smaller motor with lower air consumption. The result would be increased pressure at the inlet port, which means that the smaller motor could carry out the necessary work. However, you may need to select a smaller motor with a lower free speed in order to obtain sufficient torque at the outgoing shaft.

Choice of an air motor, general

The motor to be used should be selected by starting with the torque needed at a specific spindle speed. In other words, to choose the right motor, you have to know the required speed and torque. Since maximum power is reached at half the motor's free speed, the motor should be chosen so that the point aimed at is as close as possible to the maximum power of the motor.

The design principle of the motor means that higher torque is generated when it is braked, which tends to increase the speed. This means that the motor has a kind of speed selfregulation function built in. Use the following graph to choose the correct motor size and the correct type of gear as appropriate. The graph contains the points for the maximum torque of each motor at maximum power. Put in your point on the graph and select a marked point above and to the right of the point you need.

Then check the characteristic graph of each motor to find more accurate technical data. Always select a motor where the data required is in the orange field. Also use the correction diagram to see what it would mean to use different air supply pressures or different air flow in the motor.

Tip: Select a motor which is slightly too fast and powerful, regulate its speed and torque with a pressure regulator and/or restriction to achieve the optimum working point.

Do you need any support to select the right air motor, please feel free to consult your local sales office.

Specifying air quality (purity) in accordance with ISO8573-1:2010, the international standard for Compressed Air Quality

ISO8573-1 is the primary document used from the ISO8573 series as it is this document which specifies the amount of contamination allowed in each cubic metre of compressed air.

ISO8573-1 lists the main contaminants as Solid Particulate, Water and Oil. The purity levels for each contaminant are shown separately in tabular form, however for ease of use, this document combines all three contaminants into one easy to use table.

			;	Solid Particulate		Water	Oil
ISO8573-1:2010 CLASS	Maximum	number of partic	les per m³	Mass	Vapour	Liquid	Total Oil (aerosol liquid and vapour)
	0,1 - 0,5 micron	0,5 - 1 micron	1 - 5 micron	Concentration mg/m³	Pressure Dewpoint	g/m ³	mg/m ³
0		As sp	pecified by the equ	ipment user or sup	plier and more	e stringent tha	n Class 1
1	≤ 20 000	≤ 400	≤ 10	-	≤ -70 °C	-	0,01
2	≤ 400 000	≤ 6 000	≤ 100	-	≤ -40 °C	-	0,1
3	-	≤ 90 000	≤ 1 000	-	≤ -20 °C	-	1
4	-	-	≤ 10 000	-	≤ +3 °C	-	5
5	-	-	≤ 100 000	-	≤ +7 °C	-	-
6	-	-	-	≤ 5	≤ +10 °C	-	-
7	-	-	-	5 - 10	-	≤ 0,5	-
8	-	-	-	-	-	0,5 - 5	-
9	-	-	-	-	-	5 - 10	-
X	-	-	-	> 10	-	> 10	> 10

Specifying air purity in accordance with ISO8573-

When specifying the purity of air required, the standard must always be referenced, followed by the purity class selected for each contaminant (a different purity class can be selected for each contamination if required).

An example of how to write an air quality specification is shown below:

ISO 8573-1:2010 Class 1.2.1

ISO 8573-1:2010 refers to the standard document and its revision, the three digits refer to the purity classifications selected for solid particulate, water and total oil. Selecting an air purity class of 1.2.1 would specify the following air quality when operating at the standard's reference conditions:

Class 1 - Particulate

In each cubic metre of compressed air, the particulate count should not exceed 20,000 particles in the 0.1 - 0.5 micron size range, 400 particles in the 0.5 - 1 micron size range and 10 particles in the 1 - 5 micron size range.

Class 2 - Water

A pressure dewpoint (PDP) of -40 $^{\circ}\text{C}~$ or better is required and no liquid water is allowed.

Class 1 - Oil

In each cubic metre of compressed air, not more than 0.01mg of oil is allowed. This is a total level for liquid oil, oil aerosol and oil vapour.

ISO8573-1:2010 Class zero

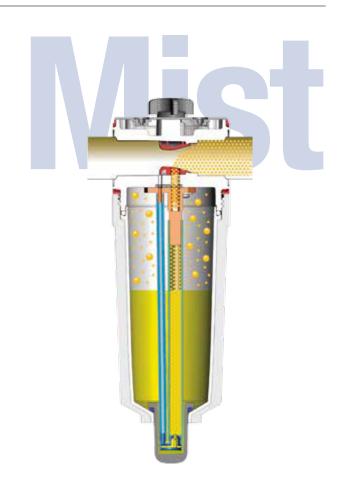
- Class 0 does not mean zero contamination.
- Class 0 requires the user and the equipment manufacturer to agree contamination levels as part of a written specification.
- The agreed contamination levels for a Class 0 specification should be within the measurement capabilities of the test equipment and test methods shown in ISO8573 Pt 2 to Pt 9.
- The agreed Class 0 specification must be written on all documentation to be in accordance with the standard.
- Stating Class 0 without the agreed specification is meaningless and not in accordance with the standard.
- A number of compressor manufacturers claim that the delivered air from their oil-free compressors is in compliance with Class 0.
- If the compressor was tested in clean room conditions, the contamination detected at the outlet will be minimal. Should the same compressor now be installed in typical urban environment, the level of contamination will be dependent upon what is drawn into the compressor intake, rendering the Class 0 claim invalid.
- A compressor delivering air to Class 0 will still require purification equipment in both the compressor room and at the point of use for the Class 0 purity to be maintained at the application.
- Air for critical applications such as breathing, medical, food, etc typically only requires air quality to Class 2.2.1 or Class 2.1.1.
- Purification of air to meet a Class 0 specification is only cost effective if carried out at the point of use.

P1V-A & B Air Motors

New Technology

The P3X Lite air preparation system is constructed from ultra light weight technopolymers instead of the traditional aluminium or zinc die cast, this means that is up to 45% lighter than conventional units.

This non-metal construction also means that the P3X Lite is corrosion free enabling it to be used in harsh industrial environments where anti freeze or aggressive synthetic oils are present.


The use of technopolymers in the design of P3X Lite has facilitated a universal body design, this has resulted in reducing the number of variants required to cover the full spectrum of applications. This can dramatically lower logistic costs and simplify stock holding for customers making the P3X Lite a very cost effective solution.

New Nano Mist Technology, New Lubricator Concept. Self-Adjusting.

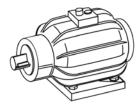
With conventional lubricators, only the oil volume per time unit can be adjusted. If the demand changes, the quantity dispensed still remains constant.

The P3X Lite lubricator concept sets new benchmarks here. For the first time, the oil volume is automatically adjusted to the flow rate. This ensures that there is neither too little nor too much oil in the system, which leads to clear economic and ecological advantages. In addition, with conventional systems, the distance between the lubricator and the equipment has to be less than 8 meters. With larger distances, the dispensed oil is deposited as a wall flow. The new lubricator principle of the P3X Lite allows for distances of up to 40 meters. This opens up new scope for the design of even more efficient production systems.

PDE2670TCUK

P1V-A & B Air Motors

Large Air Motors


P1V-A: 1.6, 2.6 & 3.6 kW

Contents	Page
Large Air MotorsMaterial and technical specification	
Large Air Motors without gear boxes, 1600, 2600 & 3600 watts	19 19 20 - 21
Large Air Motors with planetary gear boxes, 1600, 2600 & 3600 watts Permitted shaft loadings	24 25
Large Air Motors with helical gear boxes, 1600, 2600 & 3600 watts	28 - 29 & 31
Large Air Motors with worm gear boxes, 1600, 2600 & 3600 watts	37, 39 & 41 42 - 43 44
Order model codeLubrication and service life	

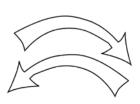
P1V-A & B Air Motors

Air motors have much smaller installation dimensions than corresponding electric motors.

Air motors can be loaded until they stall, without damage. They are designed to be able to withstand the toughest heat, vibration, impact etc.

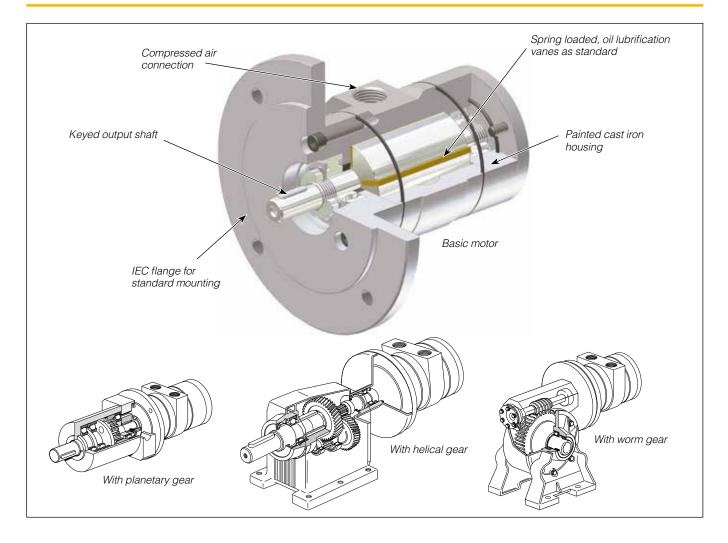
Air motors can be stopped and started continually without damage.

The simple design principle of air motors make them very easy to service.



The weight of an air motor is several times less than corresponding electric motors.

Air motors can be used in the harshest environments.



The motors are reversible as standard.

The reliability of air motors is very high, thanks to the design and the low number of moving parts.

Large Air Motors

P1V-A is a range of reversible air motors intended for heavy and demanding applications. The motor housings are made from painted cast iron, and the components sealed to permit operation in damp and dirty environments.

The range contains three different sizes, P1V-A160, P1V-A260 and P1V-A360, with power ratings of 1600, 2600 or 3600 Watts. The basic motors can be supplied with built-in gearboxes, either planetary, helical or worm drives, to provide the correct speed of rotation and torque, and the correct installation mountings.

Basic motors

All pneumatic motors are equipped with spring loaded vanes as standard, which gives the motors very good starting and low speed running characteristics. They are also equipped with vanes for intermittent or permanent oil lubrification as standard. The simple construction of the motors makes them very reliable, with long service life and they are easy to service.

Motors with planetary gears

A P1V-A combined with a planetary gear has small installation dimensions, low weight in relation to performance, free installation position, flange mounting as standard, in line output shaft and high efficiency. They are available with shaft speeds ranging from 95 rpm to 1200 rpm, with torques ranging from 16 Nm to 160 Nm.

Motors with helical gears

A P1V-A combined with a helical gear has high efficiency, simple installation with flange or foot, and competitive pricing. They are available with shaft speeds ranging from 25 rpm to 1050 rpm, with torques ranging from 23 Nm to 1800 Nm. Oil-bath gears mean that the installation position must be decided beforehand. The installation position governs the amount of oil in the gear and the location of filling and drain plugs.

Motors with worm gears

A P1V-A combined with a worm drive gear has the following characteristics: gearboxes with high gear ratios are self-locking, which means that they can be used to maintain the output shaft in position, simple installation with the flange on the left or right sides or with a foot, small installation dimensions and competitive pricing. They are available with shaft speeds ranging from 62 rpm to 500 rpm, with torques ranging from 38 Nm to 670 Nm. Oil-bath gears mean that the installation position must be decided beforehand. The installation position governs the amount of oil in the gear and the location of filling and drain plugs.

Products specially designed for mobile applications

Technical data

Note: All technical data are based on a working pressure of 6 bar and with oil. Speed tolerance accuracy in between clock and anti-clockwise directions is ±10%.

Air motor size & type	P1V-A160	P1V-A260	P1V-A360
Nominal power (watts)	1600	2600	3600
Working pressure (bar)		3 to 7, 6 in explosive atmosphere	
Working temperature (°C)		-20 to +110	
Ambient temperature (°C)		-20 to +110	
Air flow required (NI/min)	1900	3600	5800
Min pipe ID, inlet (mm)	15	19	25
Min pipe ID, outlet (mm)	15	19	25

Choice of treatment unit: recommended min air flow (I/min) at p1 7.5 bar and 0.8 bar pressure drop

	2100	3900	6200
Choice of valve:	recommended min nominal air	flow (I/min) at p1 6 bar and 1	bar pressure drop
	2300	4200	6600
Medium	40µm fi	Itered, oil mist lubricated compres	ssed air
Oil operation	1-2 drop p	er cube meter, ISO8573-1 purity	class 35
Recommended oil	Food	dstuffs industry Klüber oil 4 UH1-	32 N
Sound level free outlet (dB(A))	120	131	131
With outlet silencer (dB(A))	97.5	99	101

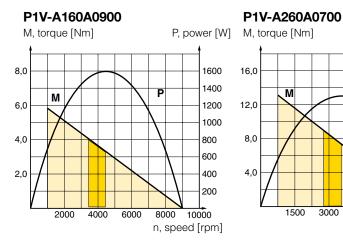
Note: sound levels are measured at free speed with the measuring instrument positioned 1 meter away from the air motor at an height of 1 meter.

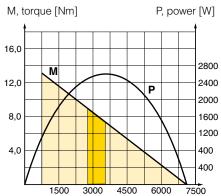
Material specification

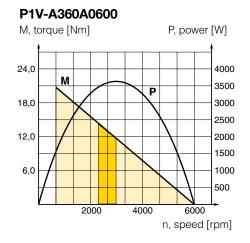
Motor housing Cast iron, synthetic paint, silver grey color Shaft High grade steel Key Hardened steel External seal Nitrile rubber, NBR Internal steel parts High grade steel Vanes Patented, no data Screws Zinc coated steel Housing Alloy steel, synthetic paint, silver grey color Shaft Hardened steel Key Hardened steel With gear boxes, common data Housing Alloy steel, synthetic paint, silver grey color Shaft Hardened steel Key Hardened steel Shaft seal Nitrile rubber, NBR Screws Zinc coated steel With planetary gear box Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Pinion Chili cast phosphor bronze Worm	Air motor size & type	P1V-A160	P1V-A260	P1V-A360			
Shaft High grade steel Key Hardened steel External seal Nitrile rubber, NBR Internal steel parts High grade steel Vanes Patented, no data Screws Zinc coated steel With gear boxes, common data Housing Alloy steel, synthetic paint, silver grey color Shaft Hardened steel Key Hardened steel Kay Hardened steel Shaft seal Nitrile rubber, NBR Screws Zinc coated steel With planetary gear box Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Chili cast phosphor bronze		Without gear box					
Key Hardened steel External seal Nitrile rubber, NBR Internal steel parts High grade steel Vanes Patented, no data Screws Zinc coated steel With gear boxes, common data Housing Alloy steel, synthetic paint, silver grey color Shaft Hardened steel Key Hardened steel Shaft seal Nitrile rubber, NBR Screws Zinc coated steel With planetary gear box Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Othili cast phosphor bronze	Motor housing	Cast iron, synthetic paint, silver grey color					
External seal Internal steel parts Internal steel parts Vanes Patented, no data Screws With gear boxes, common data Housing Alloy steel, synthetic paint, silver grey color Shaft Hardened steel Key Hardened steel Key Hardened steel Shaft seal Nitrile rubber, NBR Screws Zinc coated steel With planetary gear box Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Chili cast phosphor bronze	Shaft		High grade steel				
Internal steel parts Vanes Patented, no data Zinc coated steel With gear boxes, common data Housing Alloy steel, synthetic paint, silver grey color Shaft Hardened steel Key Hardened steel Shaft seal Nitrile rubber, NBR Screws Zinc coated steel With planetary gear box Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Chili cast phosphor bronze	Key		Hardened steel				
Vanes Patented, no data Screws Zinc coated steel With gear boxes, common data Housing Alloy steel, synthetic paint, silver grey color Shaft Hardened steel Key Hardened steel Shaft seal Nitrile rubber, NBR Screws Zinc coated steel With planetary gear box Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Chili cast phosphor bronze	External seal		Nitrile rubber, NBR				
Screws Zinc coated steel With gear boxes, common data Housing Alloy steel, synthetic paint, silver grey color Shaft Hardened steel Key Hardened steel Shaft seal Nitrile rubber, NBR Screws Zinc coated steel With planetary gear box Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Chili cast phosphor bronze	Internal steel parts		High grade steel				
Housing Alloy steel, synthetic paint, silver grey color Shaft Hardened steel Key Hardened steel Shaft seal Nitrile rubber, NBR Screws Zinc coated steel With planetary gear box Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Chili cast phosphor bronze	Vanes		Patented, no data				
Housing Alloy steel, synthetic paint, silver grey color Shaft Hardened steel Key Hardened steel Shaft seal Shaft seal Screws Zinc coated steel With planetary gear box Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Chili cast phosphor bronze	Screws	Zinc coated steel					
Shaft Key Hardened steel Key Hardened steel Shaft seal Nitrile rubber, NBR Screws Zinc coated steel With planetary gear box Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Chili cast phosphor bronze		With gear boxes, common data					
Key Hardened steel Shaft seal Nitrile rubber, NBR Screws Zinc coated steel With planetary gear box Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Chili cast phosphor bronze	Housing	Alloy	steel, synthetic paint, silver grey	color			
Shaft seal Screws Zinc coated steel With planetary gear box Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Chili cast phosphor bronze	Shaft		Hardened steel				
Screws With planetary gear box Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Cast iron, synthetic paint, silver grey color Chili cast phosphor bronze	Key		Hardened steel				
With planetary gear box Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Chili cast phosphor bronze	Shaft seal		Nitrile rubber, NBR				
Housing Cast iron, synthetic paint, silver grey color With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Chili cast phosphor bronze	Screws		Zinc coated steel				
With helical gear box Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Pinion Chili cast phosphor bronze			With planetary gear box				
Housing Aluminium or cast iron, synthetic paint, silver grey color With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Chili cast phosphor bronze	Housing	Cas	t iron, synthetic paint, silver grey o	color			
With worm gear box Housing Aluminium or cast iron, synthetic paint, silver grey color Pinion Chili cast phosphor bronze			With helical gear box				
Housing Aluminium or cast iron, synthetic paint, silver grey color Chili cast phosphor bronze	Housing	Aluminium	or cast iron, synthetic paint, silver	grey color			
Pinion Chili cast phosphor bronze			With worm gear box				
	Housing	Aluminium	or cast iron, synthetic paint, silver	grey color			
Worm Alloyed, hardened steel	Pinion		Chili cast phosphor bronze				
	Worm		Alloyed, hardened steel				

Design data

NOTE! All technical data are based on a working pressure of 6 bar and with oil.


Speed tolerance accuracy is -+10%.




A: Basic reversible motor without gear box, IEC Flange

Max power kW	Free speed*	Nominal speed rpm	Nominal torque	Min start torque Nm	Air consumption at max power	Con- nec- tion	Min pipe ID inlet/ outlet mm	Weight Kg	Order code
1,600	9000	4500	3,3	5,0	32	G1/2	15	4,2	P1V-A160A0900
2,600	7000	3500	7,1	11,0	60	G3/4	19	7,9	P1V-A260A0700
3,600	6000	3000	11,5	17,0	97	G1	25	16,5	P1V-A360A0600

^{*} maximum admissible speed (idling)

Possible working range of motor.

Optimum working range of motor.

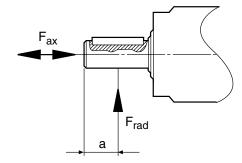
Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear

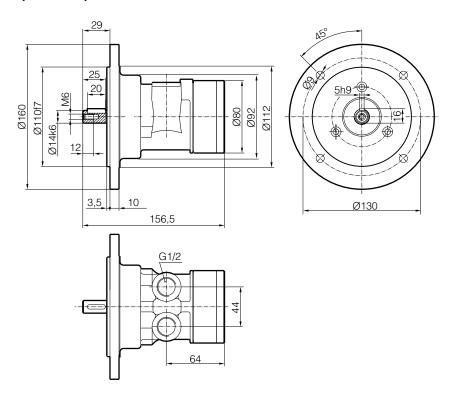
Permitted shaft loadings

Max permitted load on output shaft for basic motors (based on 10,000,000 revolutions of the output shaft, with 90% probable service life for ball bearings.

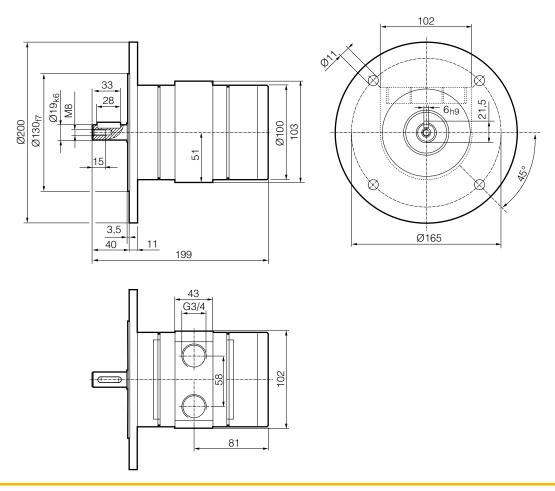
	F _{ax} N	F _{rad} N	a mm
P1V-A160A0900	600	1000	15
P1V-A260A0700	700	1400	20
P1V-A360A0600	900	1900	25

 $F_{rad} = Radial loading (N)$ $F_{ax} = Axial loading (N)$



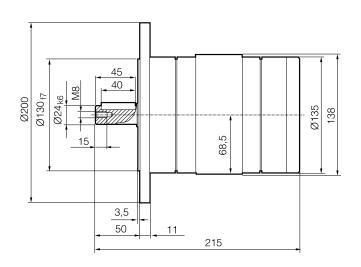

Fig. 1: Loading on output shaft.

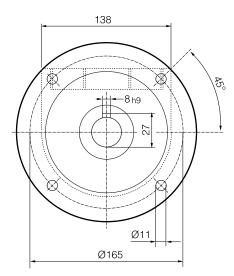
n, speed [rpm]

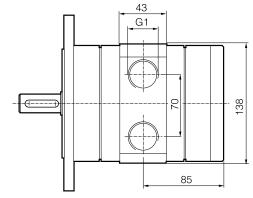


Dimensions (mm)

Flange motor IEC71AB5 (P1V-A160)

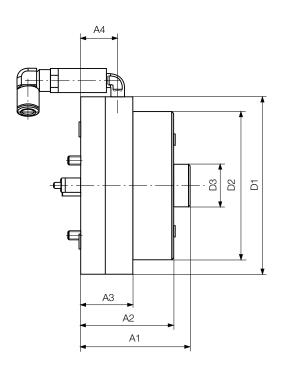


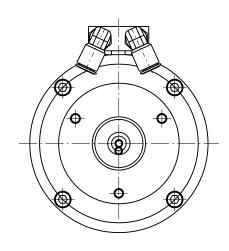

Flange motor IEC80AB5 (P1V-A260)



Dimensions (mm)

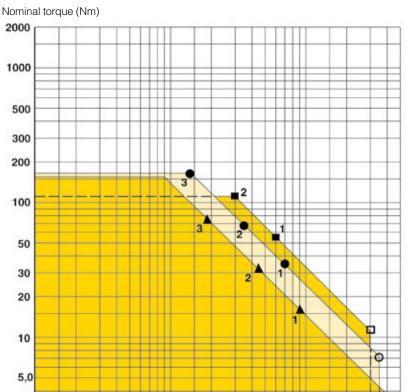
Flange motor IEC90AB5 (P1V-A360)

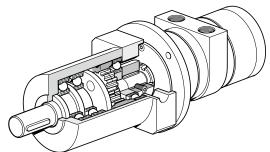

Holding Brakes


Our holding brakes are designed for the motors without gear boxes only.

For motor without gear box	Туре	P1V-A160A0900	P1V-A260A0700	P1V-A360A0600
Holding brake	Order code	P1V-A/445709B	P1V-A/445711B	P1V-A/445713B
Brake Torque		12 Nm*)	28 Nm*)	46 Nm*)

^{*)} The holding brake is not designed for use with a different drive system. Please only use it in combination with the stated motor types.


Dimensions (mm)



	D	imensic	ons of th	ne braki	ng devi	ce (mm)	
Order code	A 1	A2	А3	A 4	D1	D2	D3	
P1V-A/445709B	72.5	61.5	34.5	24.5	118	98	28	
P1V-A/445711B	107	98	43.5	35.5	190	162	28	
P1V-A/445713B	107	98	43.5	35.5	190	162	28	

Choice of an air motor with planetary gear

The motor to be used should be selected by starting with the torque needed at a specific spindle speed. In other words, to choose the right motor, you have to know the required speed and torque. Since maximum power is reached at half the motor's free speed, the motor should be chosen so that the point aimed at is as close as possible to the maximum power of the motor.

100

50

200 300

500

The design principle of the motor means that higher torque is generated when it is braked, which tends to increase the speed, etc. This means that the motor has a kind of speed self-regulation function built in.

Use the following graph to choose the correct motor size and the correct type of gear as appropriate. The graph contains the points for the maximum torque of each motor at maximum power. Put in your point on the graph and select a marked point above and to the right of the point you need.

Then check the characteristic graph of each motor to find more accurate technical data. Always select a motor where the data required is in the grey field. Also use the correction diagram to see what it would mean to use different air supply pressures with the motor.

Tip: Select a motor which is slightly too fast and powerful, regulate its speed and torque with a pressure regulator and/or restriction to achieve the optimum working point.

Choice of motors with planetary gears

Planetary gears are characterised by high efficiency, low moment of inertia and can offer high gear ratios.

The output shaft is always in the centre of the gearbox. Small installation dimensions relative to the torque provided. The gears are lubricated by grease, which means that it can be installed in all conceivable positions.

- Small installation dimensions
- Free installation position
- Simple flange installation

20 30

- Low weight
- Output shaft in centre
- High efficiency

Air motors in diagram above

△ P1V-A160A0900
 ▲ 1 P1V-A160B0120
 ▲ 2 P1V-A160B0060
 ▲ 3 P1V-A160B0019

2000 3000 5000

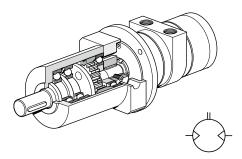
Nominal speed (rpm)

O P1V-A260A0700

1 P1V-A260B0120

2 P1V-A260B0060

9 P1V-A260B0019


● 3 P1V-A260B0019
□ P1V-A360A0600
■ 1 P1V-A360B0096

2 P1V-A360B0048

NOTE! All technical data are based on a working pressure of 6 bar and with oil.

Speed tolerance accuracy is -+10%.

B: Reversible motor with planetary gear, flange mounting, free installation position

	Max power	Max speed*	Nominal speed	Nominal Torque	Min start torque	Max permanent torque**	Air consumption at max power	Connection	Min pipe ID inlet/ outlet	Weight	Order code
	kW	rpm	rpm	Nm	Nm	Nm	l/s		mm	Kg	
5	Series P1\	/-A160									
	1,600	1200	900	16	24	40	32	G1/2	15	8,3	P1V-A160B0120
	1,600	600	450	32	48	35	32	G1/2	15	8,3	P1V-A160B0060
	1,600	190	180	77	115	100	32	G1/2	15	15,4	P1V-A160B0019
5	Series P1\	/-A260									
	2,600	1200	700	34	51	40	60	G3/4	19	12,0	P1V-A260B0120
	2,600	600	350	67	100	40	60	G3/4	19	12,0	P1V-A260B0060
	2,600	190	140	160	240	40	60	G3/4	19	13,0	P1V-A260B0019
5	Series P1\	/-A360									
	3,600	960	600	55	82	100	97	G1	25	25,5	P1V-A360B0096
	3,600	480	300	110	165	100	97	G1	25	25,5	P1V-A360B0048

^{*} maximum admissible speed (idling)

Permitted shaft loadings

The following calculations should be used to determine the loading on the output shaft bearing, if a service life of 10,000,000 revolutions of the output shaft is to be obtained with 90% probability.

$$F_{ax} = max 0,24 \times F_{rad}$$

$$M = \pm F_{ax} \times r \pm F_{rad} \times (X + K)$$

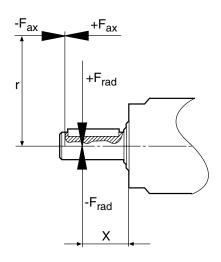
Where M and K are found in the table below

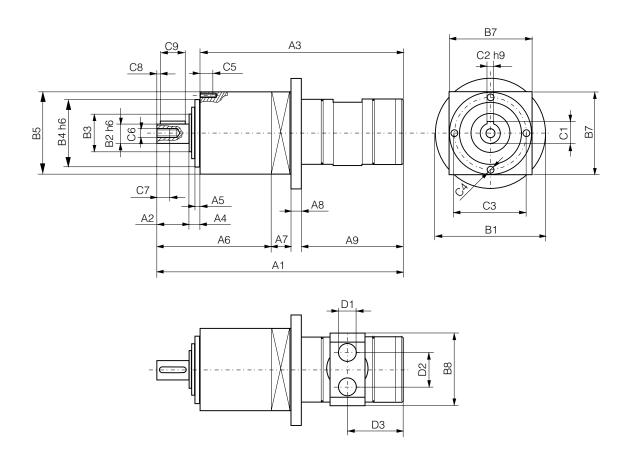
	M Nm	K N	
P1V-A160B120	2651	0,031	
P1V-A160B060	2651	0,031	
P1V-A160B019	7385	0,040	
P1V-A160B010	7385	0,040	
P1V-A260B120	2651	0,031	
P1V-A260B060	2651	0,031	
P1V-A260B019	7385	0,040	
P1V-A360B096	7385	0,040	
P1V-A360B048	7385	0,040	

Distance from centre of output shaft to axial load (m)

X Distance from collar to radial load (m)

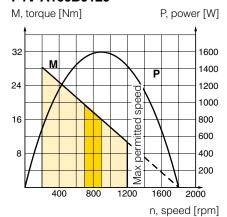
Radial loading (N)
Axial loading (N)

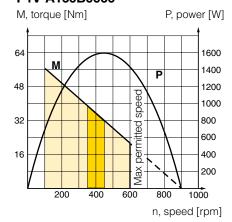



Fig 2: Load and braking torque on output shaft of planetary gear

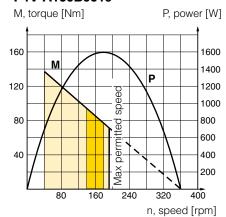
^{**} Max gear box torque for a permanent load

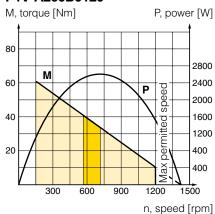
Dimensions (mm)

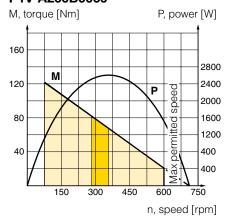

B: Motor with planetary gear, flange mounting

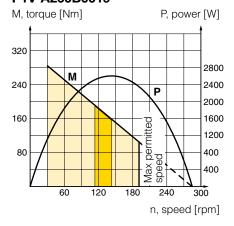

Order code	A 1	A2	А3	A4	A5	A6	A 7	A8	A9	B1	B2	В3	B 4	B 5	B6	
P1V-A160B0120	274,5	36	228,5	10	5	126,0	22	10	116,5	160	22	40	68	90	80	
P1V-A160B0060	274,5	36	228,5	10	5	126,0	22	10	116,5	160	22	40	68	90	80	
P1V-A160B0019	359,0	58	289,0	12	5	204,5	28	10	116,5	160	32	50	90	120	80	
P1V-A260B0120	317,0	36	271,0	10	6	126,0	32	11	148,0	200	22	40	68	90	100	
P1V-A260B0060	317,0	36	271,0	10	6	126,0	32	11	148,0	200	22	40	68	90	100	
P1V-A260B0019	391,5	58	321,5	12	6	204,5	28	11	148,0	200	32	50	90	120	100	
P1V-A360B0096	375,0	58	305,0	12	6	172,0	38	11	154,0	200	32	50	90	120	135	
P1V-A360B0048	375,0	58	305,0	12	6	172,0	38	11	154,0	200	32	50	90	120	135	

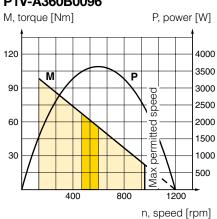
Order code	В7	B 8	C1	C2	СЗ	C4	C 5	C6	C 7	C 8	C9	D1	D2	D3	
P1V-A160B0120	120	85	24,5	6	80	M6	12	M8	13	2	32	G1/2	44	64	
P1V-A160B0060	120	85	24,5	6	80	M6	12	M8	13	2	32	G1/2	44	64	
P1V-A160B0019	120	85	35,0	10	108	M8	16	M12	22	4	50	G1/2	44	64	
P1V-A260B0120	140	102	24,5	6	80	M6	12	M8	13	2	32	G3/4	58	81	
P1V-A260B0060	140	102	24,5	6	80	M6	12	M8	13	2	32	G3/4	58	81	
P1V-A260B0019	140	102	35,0	10	108	M8	16	M12	22	4	50	G3/4	58	81	
P1V-A360B0096	140	138	35,0	10	108	M8	16	M12	22	4	50	G1	70	85	
P1V-A360B0048	140	138	35,0	10	108	M8	16	M12	22	4	50	G1	70	85	

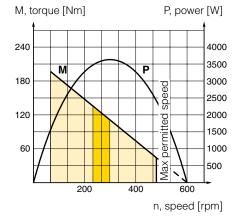

P1V-A160B0120

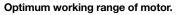

P1V-A160B0060


P1V-A160B0019

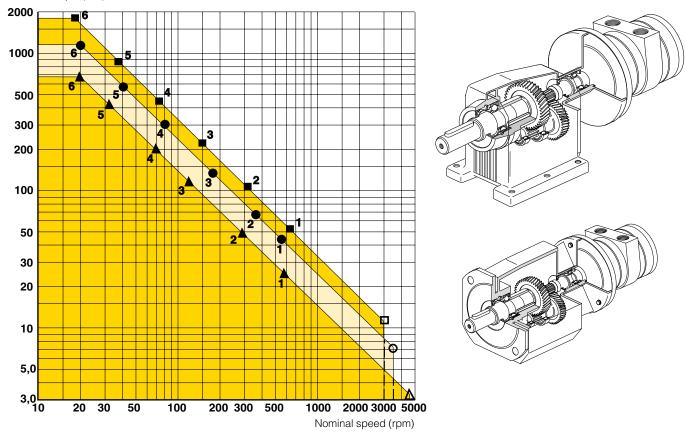

P1V-A260B0120


P1V-A260B0060


P1V-A260B0019


P1V-A360B0096

P1V-A360B0048



Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear

Choice of an air motor with helical gear

Nominal torque (Nm)

Helical gears are characterised by high efficiency. Several reduction stages permit relatively high gear ratios. Central output shaft and simple installation with flange or foot.

Oil-bath gearboxes mean that the installation position must be decided in advance. The installation position determines the volume of oil in the gearbox and location of oil filling and drain plugs.

- High efficiency
- Simple flange or foot installation
- Relatively low price
- Installation position must be chosen in advance
- Higher weight than planetary or worm drive gears.

Air motors in diagram above

Δ P1V-A160A0900

A 1 P1V-A160•0066••, Choose installation below

A2 P1V-A160•0032••, Choose installation below

▲3 P1V-A160•0014••, Choose installation below **4**

P1V-A160•0008••, Choose installation below **A** 5 P1V-A160•0004••, Choose installation below

▲6 P1V-A160•0003••, Choose installation below

0 P1V-A260A0700

P1V-A260•0080••, Choose installation below

P1V-A260•0052••, Choose installation below

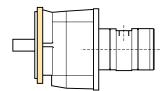
● 3 P1V-A260•0025••, Choose installation below

P1V-A260•0011••, Choose installation below **•** 5 P1V-A260•0006••, Choose installation below

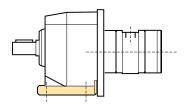
● 6 P1V-A260 • 0003 • • . Choose installation below

P1V-A360A0600

1 P1V-A360•0105••, Choose installation below

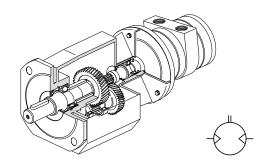

2 P1V-A360•0052••, Choose installation below

3 P1V-A360•0025••, Choose installation below P1V-A360•0013••, Choose installation below


P1V-A360•0006••, Choose installation below

P1V-A360•0003••, Choose installation below

Installation, flange mounting


Installation, foot mounting

NOTE! All technical data are based on a working pressure of 6 bar and with oil.

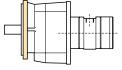
Speed tolerance accuracy is -+10%.

D: Reversible motor with helical gear, flange mounting

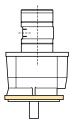
Max power	Max speed*	Nominal speed	Nominal torque	Min start torque	Max permanent torque**	Air consumption at max power	Connection	Min pipe ID inlet/ outlet	Weight	Order code
kW	rpm	rpm	Nm	Nm	Nm	l/s		mm	Kg	
Series P1	V-A160									
1,600	660	590	24	36	45	32	G1/2	15	9,8	P1V-A160D0066 • •
1,600	320	280	50	75	140	32	G1/2	15	11,5	P1V-A160D0032 • •
1,600	140	120	113	171	280	32	G1/2	15	14,4	P1V-A160D0014 • •
1,600	80	70	197	299	560	32	G1/2	15	31,7	P1V-A160D0008 • •
1,600	37	33	413	626	1000	32	G1/2	15	49,2	P1V-A160D0004 • •
1,600	21	18	716	1084	1600	32	G1/2	15	67,2	P1V-A160D0003 • •
Series P1	V-A260	FCF	42	64	42	60	C2/4	19	140	P1V-A260D0080••
2,600		565	65			60	G3/4		14,9	
2,600 2,600	520 250	365 175	135	100 210	115 235	60	G3/4 G3/4	19 19	16,1 19,0	P1V-A260D0052•• P1V-A260D0025••
,	110	80	302	468	500	60		19	36,4	P1V-A260D0025
2,600 2,600	55	40	614	951	1000	60	G3/4	19		P1V-A260D0001100
2,600	30	20	990	1530	1600	60	G3/4 G3/4	19	54,9 68,9	P1V-A260D0003
2,000	30	20	990	1550	1000	00	G3/4	19	00,9	F1V-A200D0003**
Series P1	V-A360									
3,600	1050	625	52	78	80	97	G1	25	24,6	P1V-A360D0105 • •
3,600	520	310	105	155	175	97	G1	25	24,6	P1V-A360D0052 • •
3,600	250	150	216	320	385	97	G1	25	45,0	P1V-A360D0025 • •
3,600	125	74	441	652	795	97	G1	25	63,5	P1V-A360D0013 • •
3,600	60	36	888	1312	1600	97	G1	25	77,5	P1V-A360D0006 • •
3,600	30	18	1800	2670	4000	97	G1	25	151,5	P1V-A360D0003 • •

^{*} maximum admissible speed (idling)

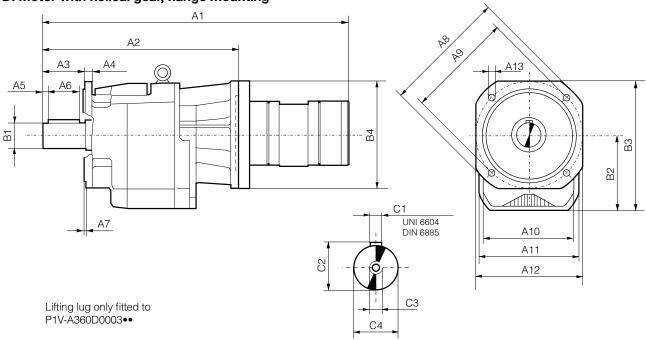
Note!


•• specify installation position in the order code as in the illustrations below.

Example: P1V-A160D0066B5


Note: Oil-bath gearboxes mean that the installation position must be decided in advance. The installation position determines the volume of oil in the gearbox and location of oil filling and drain plugs.

D: Installation positions, helical gear, flange mounting

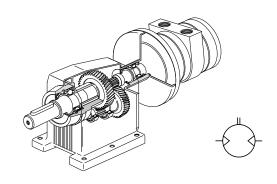


^{**} Max gear box torque for a permanent load

Dimensions (mm)

D: Motor with helical gear, flange mounting

Order code	A1	A2	A3	A 4	A 5	A6	A7	A8	A9	A10	A11	A12	A13	B1	B2	В3
P1V-A160D0066••	370,5	244	40	8	5	30	3,0	140	115	95f7	95	105	9,5	20	82	138,0
P1V-A160D0032••	399,5	273	50	10	5	40	3,5	160	130	110f7	110	135	9,5	25	92	159,5
P1V-A160D0014••	433,5	307	60	12	5	50	3,5	200	165	130f7	130	150	11,5	30	108	183,0
P1V-A160D0008••	463,5	337	70	13	5	60	4,0	250	215	180 f7	155	210	14,0	35	128	233,0
P1V-A160D0004••	559,5	433	80	16	5	70	5,0	300	265	230 f7	185	260	14,0	40	152	282,0
P1V-A160D0003••	601,5	475	100	16	5	90	5,0	300	265	230 f7	210	260	14,0	50	190	320,0
P1V-A260D0080••	423,0	264	40	8	5	30	3,0	140	115	95f7	95	105	9,5	20	82	138,0
P1V-A260D0052••	451,0	292	50	10	5	40	3,5	160	130	110f7	110	135	9,5	25	92	159,5
P1V-A260D0025••	486,0	327	60	12	5	50	3,5	200	165	130f7	130	150	11,5	30	108	183,0
P1V-A260D0011 • •	515,0	356	70	13	5	60	4,0	250	215	180 f7	155	210	14,0	35	128	233,0
P1V-A260D0006••	612,0	453	80	16	5	70	5,0	300	265	230 f7	185	260	14,0	40	152	282,0
P1V-A260D0003••	634,0	475	100	16	5	90	5,0	300	265	230 f7	210	260	14,0	50	190	320,0
P1V-A360D0105••	458,0	292	50	10	5	40	3,5	160	130	110f7	110	135	9,5	25	92	159,5
P1V-A360D0052••	458,0	292	50	10	5	40	3,5	160	130	110f7	110	135	9,5	25	92	159,5
P1V-A360D0025••	521,0	356	70	13	5	60	4,0	250	215	180 f7	155	210	14,0	35	128	233,0
P1V-A360D0013••	547,0	382	80	16	5	70	5,0	300	265	230 f7	185	260	14,0	40	152	282,0
P1V-A360D0006 • •	640,0	475	100	16	5	90	5,0	300	265	230 f7	210	260	14,0	50	190	320,0
P1V-A360D0003••	699,0	534	140	20	15	110	5,0	400	350	300 f7	320	350	18,0	80	247	424,0


Order code	B4	C1	C2	СЗ	C4
P1V-A160D0066••	160	6x6x30	22,5	M8x19	20 h6
P1V-A160D0032••	160	8x7x40	28,0	M8x19	25 h6
P1V-A160D0014 • •	160	8x7x50	33,0	M10x22	30 h6
P1V-A160D0008••	160	10x8x60	38,0	M10x22	35 h6
P1V-A160D0004 • •	160	12x8x70	43,0	M12x28	40 h6
P1V-A160D0003••	160	14x9x90	53,5	M16x36	50 h6
P1V-A260D0080 • •	200	6x6x30	22,5	M8x19	20 h6
P1V-A260D0052 • •	200	8x7x40	28,0	M8x19	25 h6
P1V-A260D0025••	200	8x7x50	33,0	M10x22	30 h6
P1V-A260D0011 • •	200	10x8x60	38,0	M10x22	35 h6
P1V-A260D0006 • •	200	12x8x70	43,0	M12x28	40 h6
P1V-A260D0003••	200	14x9x90	53,5	M16x36	50 h6
P1V-A360D0105••	200	8x7x40	28,0	M8x19	25 h6
P1V-A360D0052••	200	8x7x40	28,0	M8x19	25 h6
P1V-A360D0025••	200	10x8x60	38,0	M10x22	35 h6
P1V-A360D0013••	200	12x8x70	43,0	M12x28	40 h6
P1V-A360D0006••	200	14x9x90	53,5	M16x36	50 h6
P1V-A360D0003••	200	22x14x110	85,0	M20x42	80 h6

^{••:} see previous page for installation positions

NOTE! All technical data are based on a working pressure of 6 bar and with oil.

Speed tolerance accuracy is -+10%.

E: Reversible motor with helical gear, foot mounting

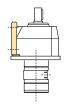
Max power	Max I speed*	Nominal speed	Nominal torque	Min start torque	Max permanent torque**	Air consumption at max power	Connection	Min pipe ID inlet/ outlet	Weight	Order code
kW	rpm	rpm	Nm	Nm	Nm	l/s		mm	Kg	
Series P1	V-A160									
1,600	660	590	24	36	45	32	G1/2	15	9,8	P1V-A160E0066 • •
1,600	320	280	50	75	140	32	G1/2	15	11,5	P1V-A160E0032 • •
1,600	140	120	113	171	280	32	G1/2	15	14,4	P1V-A160E0014 • •
1,600	80	70	197	299	560	32	G1/2	15	31,7	P1V-A160E0008 • •
1,600	37	33	413	626	1000	32	G1/2	15	49,2	P1V-A160E0004 • •
1,600	21	18	716	1084	1600	32	G1/2	15	67,2	P1V-A160E0003 • •
Series P1										
2,600	800	565	42	64	42	60	G3/4	19	14,9	P1V-A260E0080 • •
2,600	520	365	65	100	115	60	G3/4	19	16,1	P1V-A260E0052••
2,600	250	175	135	210	235	60	G3/4	19	19,0	P1V-A260E0025••
2,600	110	80	302	468	500	60	G3/4	19	36,4	P1V-A260E0011••
2,600	55	40	614	951	1000	60	G3/4	19	54,9	P1V-A260E0006 • •
2,600	30	20	990	1530	1600	60	G3/4	19	68,9	P1V-A260E0003••
Series P1										
3,600	1050	625	52	78	80	97	G1	25	24,6	P1V-A360E0105••
3,600	520	310	105	155	175	97	G1	25	24,6	P1V-A360E0052••
3,600	250	150	216	320	385	97	G1	25	45,0	P1V-A360E0025 • •
3,600	125	74	441	652	795	97	G1	25	63,5	P1V-A360E0013 • •
3,600	62	36	868	1312	1600	97	G1	25	77,5	P1V-A360E0006••
3,600	30	18	1800	2670	4000	97	G1	25	151,5	P1V-A360E0003 • •

^{*} maximum admissible speed (idling)

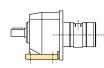
Note!

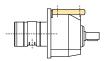
•• specify installation position in the order code as in the illustrations below.

Example: P1V-A160E0066V5

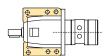

Note: Oil-bath gearboxes mean that the installation position must be decided in advance. The installation position determines the volume of oil in the gearbox and location of oil filling and drain plugs.

E: Installation positions, helical gear, foot mounting



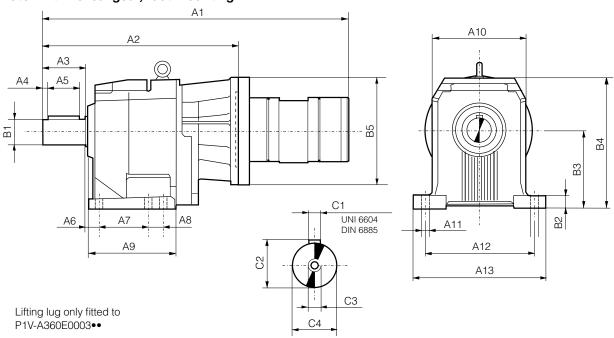

V6

B3


B8

B7

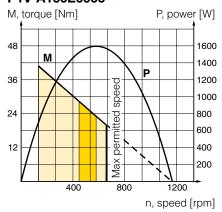
B6



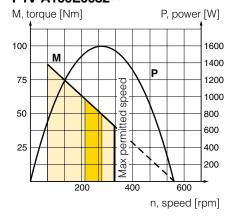
^{**} Max gear box torque for a permanent load

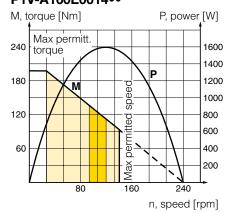
Dimensions (mm)

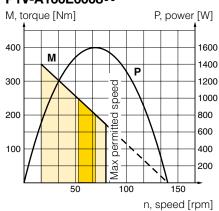
E: Motor with helical gear, foot mounting

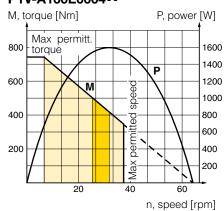

Order code	A1	A2	А3	A 4	A 5	A6	A 7	A8	A 9	A10	A11	A12	A13	B1	B2	В3
P1V-A160E0066••	370,5	244	40	5	30	18	50	37,0	107,0	95	9	110	130	20	15	85
P1V-A160E0032••	399,5	273	50	5	40	18	60	47,5	137,0	110	11	130	155	25	17	100
P1V-A160E0014••	433,5	307	60	5	50	18	70	60,0	156,0	130	11	160	190	30	20	110
P1V-A160E0008••	463,5	337	70	5	60	20	105	44,5	185,5	155	14	180	216	35	18	130
P1V-A160E0004••	559,5	433	80	5	70	25	110	46,0	200,0	185	18	225	270	40	22	155
P1V-A160E0003••	601,5	475	100	5	90	25	145	35,0	222,0	210	18	250	300	50	25	195
P1V-A260E0080••	413,0	244	40	5	30	18	50	37,0	107,0	95	9	110	130	20	15	85
P1V-A260E0052••	451,0	292	50	5	40	18	60	47,5	137,0	110	11	130	155	25	17	100
P1V-A260E0025••	486,0	327	60	5	50	18	70	60,0	156,0	130	11	160	190	30	20	110
P1V-A260E0011 • •	515,0	356	70	5	60	20	105	44,5	185,5	155	14	180	216	35	18	130
P1V-A260E0006 • •	612,0	453	80	5	70	25	110	46,0	200,0	185	18	225	270	40	22	155
P1V-A260E0003 • •	654,0	495	100	5	90	25	145	35,0	222,0	210	18	250	300	50	25	195
P1V-A360E0105••	457,0	292	50	5	40	18	60	47,5	137,0	110	11	130	155	25	17	100
P1V-A360E0052••	457,0	292	50	5	40	18	60	47,5	137,0	110	11	130	155	25	17	100
P1V-A360E0025••	521,0	356	70	5	60	20	105	44,5	185,5	155	14	180	216	35	18	130
P1V-A360E0013••	547,0	382	80	5	70	25	110	46,0	200,0	185	18	225	270	40	22	155
P1V-A360E0006••	660,0	495	100	5	90	25	145	35,0	222,0	210	18	250	300	50	25	195
P1V-A360E0003••	699,0	534	140	15	110	33	210	_	277,0	320	26	370	440	80	35	250

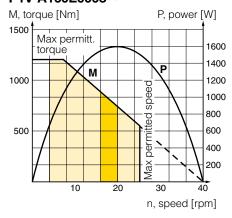
Order code	B4	B 5	C1	C2	СЗ	C4
P1V-A160E0066••	141	160	6x6x30	22,5	M8x19	20 h6
P1V-A160E0032••	166	160	8x7x40	28,0	M8x19	25 h6
P1V-A160E0014 • •	181	160	8x7x50	33,0	M10x22	30 h6
P1V-A160E0008••	223	160	10x8x60	38,0	M10x22	35 h6
P1V-A160E0004••	278	160	12x8x70	43,0	M12x28	40 h6
P1V-A160E0003••	316	160	14x9x90	53,5	M16x36	50 h6
P1V-A260E0080 • •	141	200	6x6x30	22,5	M8x19	20 h6
P1V-A260E0052••	166	200	8x7x40	28,0	M8x19	25 h6
P1V-A260E0025 • •	181	200	8x7x50	33,0	M10x22	30 h6
P1V-A260E0011 • •	223	200	10x8x60	38,0	M10x22	35 h6
P1V-A260E0006 • •	278	200	12x8x70	43,0	M12x28	40 h6
P1V-A260E0003 • •	316	200	14x9x90	53,5	M16x36	50 h6
P1V-A360E0105 • •	166	200	8x7x40	28,0	M8x19	25 h6
P1V-A360E0052••	166	200	8x7x40	28,0	M8x19	25 h6
P1V-A360E0025 • •	223	200	10x8x60	38,0	M10x22	35 h6
P1V-A360E0013••	278	200	12x8x70	43,0	M12x28	40 h6
P1V-A360E0006 • •	316	200	14x9x90	53,5	M16x36	50 h6
P1V-A360E0003••	420	200	22x14x110	85,0	M20x42	80 h6

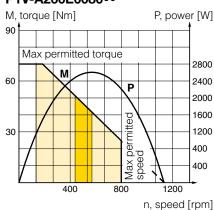

^{••:} see previous page for installation positions

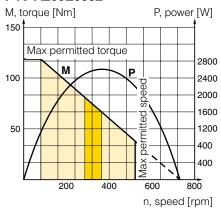

P1V-A160D0066•• P1V-A160E0066••

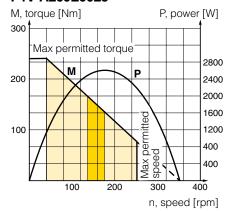

P1V-A160D0032•• P1V-A160E0032••


P1V-A160D0014•• P1V-A160E0014••


P1V-A160D0008•• P1V-A160E0008••

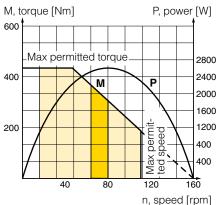

P1V-A160D0004•• P1V-A160E0004••

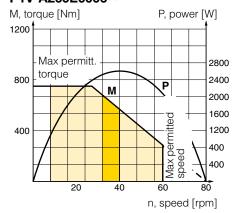

P1V-A160D0003•• P1V-A160E0003••


P1V-A260D0080 • • P1V-A260E0080 • •

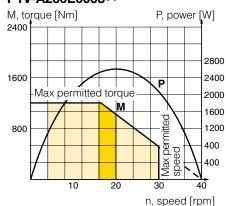
P1V-A260D0052•• P1V-A260E0052••

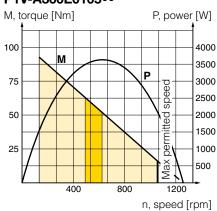
P1V-A260D0025•• P1V-A260E0025••

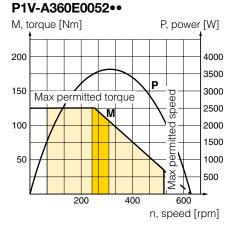

Possible working range of motor.

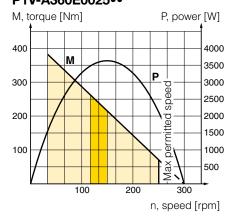

Optimum working range of motor.

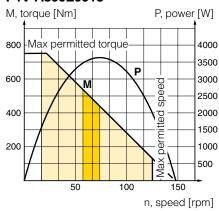
Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear

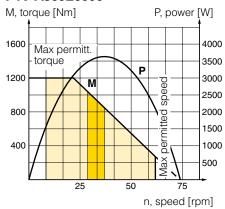

P1V-A260D0011•• P1V-A260E0011••

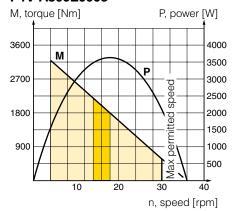

P1V-A260D0006•• P1V-A260E0006••

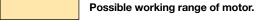

P1V-A260D0003•• P1V-A260E0003••


P1V-A360D0105•• P1V-A360E0105••


P1V-A360D0052••


P1V-A360D0025•• P1V-A360E0025••


P1V-A360D0013•• P1V-A360E0013••



P1V-A360D0006•• P1V-A360E0006••

P1V-A360D0003••
P1V-A360E0003••

Optimum working range of motor.

Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear

Permitted shaft loadings

Radial forces

Depending on the application, the drive shaft of the gearbox can be subjected to various radial forces, which can be calculated as follows:

$$F_{rad} = 2000 \times M \times K_r / d$$

 $\begin{array}{ll} F_{\text{rad}} & & \text{Radial force (N)} \\ M & & \text{Torque (Nm)} \\ \end{array}$

d Diameter of wheel, pulley, sprocket or

gear wheel (mm)

Kr = 1 Sprocket constant Kr = 1.25 Gear wheel constant Kr = 1.5 - 2.5 Vee-belt pulley constant

a. The force is applied to the centre of the output shaft, as in figure 3. This value can be read off on the table below, where consideration must be given to the following:

$$F_{radc} \leq F_{rt}$$

b. The force is applied at a distance x, as in figure 4. This value can be calculated as follows:

$$F_{radx} = F_{rt} \times a / (b + X)$$
 L/2 < X < c

 F_{rt} Permissible radial force on centre of output-shaft (N)

a Gear constant
b Gear constant
c Gear constant


Distance from shoulder on shaft to point of application of force (mm)

All values are found in the table below.

The following should be considered, however:

$$F_{radc} \leq F_{radx}$$

				_
Motor	а	b	С	F _{rt} N
P1V-A160•0066••	46,0	26,0	450	1130
P1V-A160•0032••	54,5	29,5	550	2480
P1V-A160•0014••	60,5	30,5	750	4710
P1V-A160•0008••	69,0	34,0	850	6620
P1V-A160•0004••	80,5	40,5	900	10000
P1V-A160•0003••	98,5	48,5	1000	16000
P1V-A260•0080••	46,0	26,0	450	660
P1V-A260•0052••	54,5	29,5	550	2110
P1V-A260•0025••	60,5	30,5	750	3850
P1V-A260•0011••	69,0	34,0	850	5660
P1V-A260•0006••	80,5	40,5	900	10000
P1V-A260•0003••	98,5	48,5	1000	16000
P1V-A360•0105••	54,5	29,5	550	1640
P1V-A360•0052••	54,5	29,5	550	2110
P1V-A360•0025••	69,0	34,0	850	4280
P1V-A360•0013••	80,5	40,5	900	6890
P1V-A360•0006••	98,5	48,5	1000	16000
P1V-A360•0003••	131,0	61,0	1500	35000

•• Installation position, optional

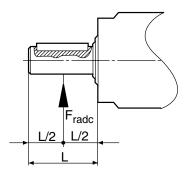


Fig. 3: Force applied at centre of shaft

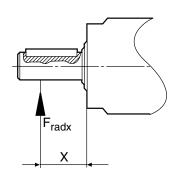
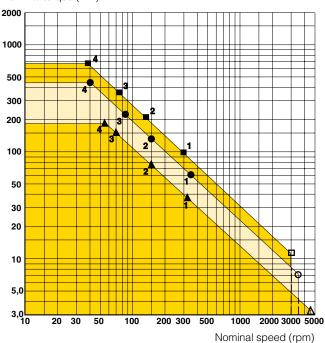


Fig. 4: Force applied at distance X

Axial forces


The maximum permissible axial force can be calculated as follows:

$$F_{ax} = F_{rt} \times 0.2$$

Choice of an air motor with worm gear

Nominal torque (Nm)

Worm gears are characterised by relatively simple technical construction, with a worm and pinion. This can give a large gear ratio and small dimensions. The efficiency of a worm drive gear is considerably lower than for planetary or helical gears. The design principle of worm drive gears makes them self-locking at higher gear ratios (the output shaft is "locked").

The output shaft comes out at an angle of 90° to the motor spindle. Installation is simple, with a flange on the left or right side, or with a foot. The gearbox is equipped as standard with a hollow output shaft with a key slot. Loose shafts with key can put the output shaft on the right, left, or on both sides.

Oil-bath gearboxes mean that the installation position must be decided in advance. The installation position determines the volume of oil in the gearbox and location of oil filling and drain plugs.

- Low weight in relation to gear ratio
- Non-reversible at high gear ratios
- Relatively low price
- Relatively low efficiency
- Installation position must be decided in advance
- Output shaft at 90° to motor spindle

Air motors in diagram above

Δ P1V-A160A0900

A 1 P1V-A160•0043••, Choose installation below **A**2 P1V-A160•0020••, Choose installation below

A3 P1V-A160•0010••, Choose installation below

P1V-A160•0008••, Choose installation below

0 P1V-A260A0700

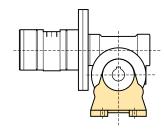
P1V-A260•0050••, Choose installation below

P1V-A260•0022••, Choose installation below 2

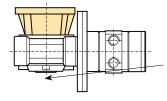
3 P1V-A260•0013••, Choose installation below

P1V-A260•0008••, Choose installation below

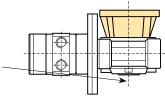
P1V-A360A0600


P1V-A360•0050••, Choose installation below

P1V-A360•0022••, Choose installation below

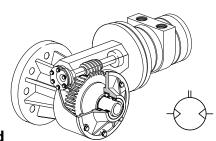

3 P1V-A360•0013••, Choose installation below

P1V-A360•0006••, Choose installation below


Installation, foot mounting

Installation, flange mounting, left-hand

Additional flange option possible on the opposite face



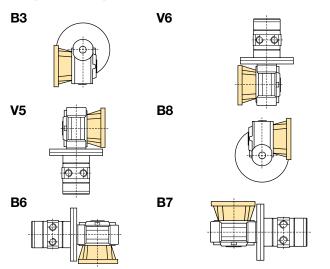
Installation, flange mounting, right-hand

NOTE! All technical data are based on a working pressure of 6 bar and with oil.

Speed tolerance accuracy is -+10%.

F: Reversible motor with worm gear, flange mounting left-hand

Max power kW	speed*	Nominal speed rpm	Nominal torque	Min start torque Nm	Max permanent torque** Nm	Types of self- locking	Air consumption at max power	Connection	Min pipe ID inlet/ outlet mm	Weight Kg	Order code
Series F	P1V-A16	0									
1,600	430	320	38	40	44	1	32	G1/2	15	7,2	P1V-A160F0043 • •
1,600	200	150	77	65	125	2	32	G1/2	15	10,5	P1V-A160F0020 • •
1,600	95	70	154	117	250	3	32	G1/2	15	17,8	P1V-A160F0010 • •
1,600	75	55	180	130	225	3	32	G1/2	15	17,8	P1V-A160F0008 • •
Series F		-	20	74	405		00	00/4	40	445	D4W 4000F00F0
2,600		350	62	71	125	1	60	G3/4	19	14,5	P1V-A260F0050••
2,600 2,600 2,600	125	150 85 44	133 224 415	133 191 308	285 430 660	2	60 60 60	G3/4 G3/4 G3/4	19 19 19	21,0 21,0 57,0	P1V-A260F0013 • • P1V-A260F0008 • •
Series F	P1V-A36	0								•	
3,600	500	300	98	113	125	1	97	G1	25	22,9	P1V-A360F0050 • •
3,600	220	130	224	230	285	1	97	G1	25	31,0	P1V-A360F0022 • •
3,600	125	75	368	317	595	2	97	G1	25	55,0	P1V-A360F0013 • •
3,600	62	37	670	480	660	3	97	G1	25	65,5	P1V-A360F0006 • •


^{*} maximum admissible speed (idling)

Note!

•• specify installation position in the order code as in the illustrations below.

Example: P1V-A160F0043B3

F: Installation positions, worm gear, flange mounting left-hand

Note: Oil-bath gearboxes mean that the installation position must be decided in advance. The installation position determines the volume of oil in the gearbox and location of oil filling and drain plugs.

Self-locking

Dynamic self-locking means that the force acting on the output shaft of the gear can not turn the gear further when the air motor is stopped. Dynamic self-locking is only possible when the gear ratio is high, and at low speeds. None of our worm drive gears are completely self-locking in dynamic conditions.

Static self-locking means that the force acting on the output shaft of the gear can not begin to turn the shaft.

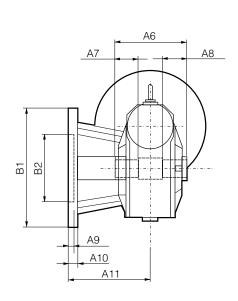
When loads with considerable momentum are driven, it is necessary to have a braking time sufficient to stop the gearbox from being overloaded. It is extremely important that the maximum permitted torque is not exceeded.

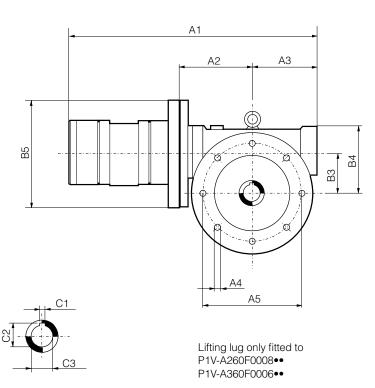
Tip: Braking of the air motor can be arranged by either slowly restricting the air supply to the motor until it is completely shut off, or by slowly reducing the supply pressure to zero.

Types of Self-locking

- Static, not self-locking
- Static, self-locking quicker return under vibration not dynamically self-locking
- 3. Static, self-locking return only possible under vibration good dynamic self-locking

Important!


Since it is practically impossible to guarantee total self-locking, an external brake must be used to guarantee that vibration can not cause an output shaft to move.



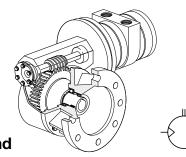
^{**} Max gear box torque for a permanent load

Dimensions (mm)

F: Motor with worm gear, flange mounting

As standard, the motor has a hollow shaft with key slot. Please refer to page 44 for a dimension sketch of the single ended and double ended shafts and for additional flange on the opposite side.

Order code	A1	A2	А3	A4	A5	A6	A 7	A8	A9	A10	A11	B1	B2	В3	
P1V-A160F0043••	259,5	70	63	10,5	90	82	22,5	22,5	10	12	85,0	125	70 H8	49,50	
P1V-A160F0020••	301,5	95	80	10,5	130	120	40,0	40,0	8	11	116,0	180	115 H8	62,17	
P1V-A160F0010••	362,5	126	110	12,5	176	140	45,0	45,0	15	15	151,0	210	152 H8	86,90	
P1V-A160F0008••	362,5	126	110	12,5	176	140	45,0	45,0	15	15	151,0	210	152 H8	86,90	
P1V-A260F0050••	292,0	70	63	10,5	90	82	22,5	22,5	10	12	85,0	125	70 H8	49,50	
P1V-A260F0022••	395,0	126	110	12,5	176	140	45,0	45,0	15	15	151,0	210	152 H8	86,90	
P1V-A260F0013••	395,0	126	110	12,5	176	140	45,0	45,0	15	15	151,0	210	152 H8	86,90	
P1V-A260F0008 • •	498,0	185	154	16,0	255	165	52,5	52,5	18	20	197,5	320	180 H8	130,00	
P1V-A360F0050••	340,0	95	80	10,5	130	120	40,0	40,0	8	11	116,0	180	115 H8	62,17	
P1V-A360F0022••	401,0	126	110	12,5	176	140	45,0	45,0	15	15	151,0	210	152 H8	86,90	
P1V-A360F0013••	456,0	153	138	13,5	230	155	45,0	45,0	18	20	179,5	280	170 H8	110,10	
P1V-A360F0006 • •	504,0	185	154	16,0	255	165	52,5	52,5	18	20	197,5	320	180 H8	130,00	


Order code	B4	B 5	C1	C2	C 3
P1V-A160F0043••	80,0	160	8 H8	28,3	25 H7
P1V-A160F0020••	98,5	160	8 H8	28,3	25 H7
P1V-A160F0010••	138,0	160	10 H8	38,3	35 H7
P1V-A160F0008••	138,0	160	10 H8	38,3	35 H7
P1V-A260F0050••	80,0	200	8 H8	28,3	25 H7
P1V-A260F0022••	138,0	200	10 H8	38,3	35 H7
P1V-A260F0013••	138,0	200	10 H8	38,3	35 H7
P1V-A260F0008••	195,0	200	14 H8	48,8	45 H7
P1V-A360F0050••	98,5	200	8 H8	28,3	25 H7
P1V-A360F0022••	138,0	200	10 H8	38,3	35 H7
P1V-A360F0013••	169,0	200	12 H8	45,3	42 H7
P1V-A360F0006••	195,0	200	14 H8	48,8	45 H7

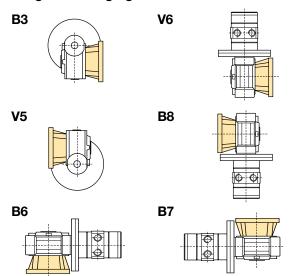
••: see previous page for installation positions

NOTE! All technical data are based on a working pressure of 6 bar and with oil.

Speed tolerance accuracy is -+10%.

G: Reversible motor with worm gear, flange mounting right-hand

Max power	Max speed*	Nominal speed	Nominal torque	Min start torque	Max permanent torque**	Types of self- locking	Air consumption at max power	Connection	Min pipe ID inlet/ outlet	Weight Kg	Order code
Series P							4.2			9	
1,600	430	320	38	40	44	1	32	G1/2	15	7,2	P1V-A160G0043••
1,600	200	150	77	65	125	2	32	G1/2	15	10,5	P1V-A160G0020 • •
1,600	95	70	154	117	250	3	32	G1/2	15	17,8	P1V-A160G0010 • •
1,600	75	55	180	130	225	3	32	G1/2	15	17,8	P1V-A160G0008 • •
Series P	1V-A26	0									
2,600	500	350	62	71	125	1	60	G3/4	19	14,5	P1V-A260G0050 • •
2,600	220	150	133	133	285	1	60	G3/4	19	21,0	P1V-A260G0022 • •
2,600	125	85	224	191	430	2	60	G3/4	19	21,0	P1V-A260G0013 • •
2,600	62	44	415	308	660	3	60	G3/4	19	57,0	P1V-A260G0008••
Series P	P1V-A36	0									
3,600	500	300	98	113	125	1	97	G1	25	22,9	P1V-A360G0050 • •
3,600	220	130	224	230	285	1	97	G1	25	31,0	P1V-A360G0022 • •
3,600	125	75	368	317	595	2	97	G1	25	55,0	P1V-A360G0013 • •
3,600	62	37	670	480	660	3	97	G1	25	65,5	P1V-A360G0006••


maximum admissible speed (idling)

Note!

•• specify installation position in the order code as in the illustrations below.

Example: P1V-A160G0043B3

G: Installation positions, worm gear gear, flange mounting right-hand

Note: Oil-bath gearboxes mean that the installation position must be decided in advance. The installation position determines the volume of oil in the gearbox and location of oil filling and drain plugs.

Self-locking shafts and for additional flange on the opposite side.

Dynamic self-locking means that the force acting on the output shaft of the gear can not turn the gear further when the air motor is stopped. Dynamic self-locking is only possible when the gear ratio is high, and at low speeds. None of our worm drive gears are completely self-locking in dynamic conditions.

Static self-locking means that the force acting on the output shaft of the gear can not begin to turn the shaft.

When loads with considerable momentum are driven, it is necessary to have a braking time sufficient to stop the gearbox from being overloaded. It is extremely important that the maximum permitted torque is not exceeded.

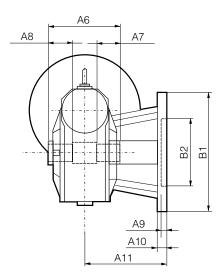
Tip: Braking of the air motor can be arranged by either slowly restricting the air supply to the motor until it is completely shut off, or by slowly reducing the supply pressure to zero.

Types of Self-locking

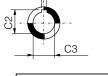
- 1. Static, not self-locking
- Static, self-locking quicker return under vibration not dynamically self-locking
- Static, self-locking return only possible under vibration good dynamic self-locking

Important!

Since it is practically impossible to guarantee total self-locking, an external brake must be used to guarantee that vibration can not cause an output shaft to move.



^{**} Max gear box torque for a permanent load

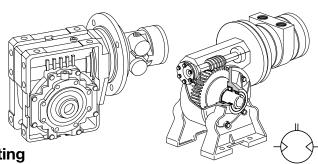

Dimensions (mm)

G: Motor with worm gear, flange mounting

Lifting lug only fitted to P1V-A260G0008•• P1V-A360G0006••

As standard, the motor has a hollow shaft with key slot. Please refer to page 44 for a dimension sketch of the single ended and double ended shafts and for additional flange on the opposite side.

Order code	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	B1	B2	В3	
P1V-A160G0043••	259,5	70	63	10,5	90	82	22,5	22,5	10	12	85,0	125	70 H8	49,50	
P1V-A160G0020••	301,5	95	80	10,5	130	120	40,0	40,0	8	11	116,0	180	115 H8	62,17	
P1V-A160G0010••	362,5	126	110	12,5	176	140	45,0	45,0	15	15	151,0	210	152 H8	86,90	
P1V-A160G0008••	362,5	126	110	12,5	176	140	45,0	45,0	15	15	151,0	210	152 H8	86,90	
P1V-A260G0050 • •	292,0	70	63	10,5	90	82	22,5	22,5	10	12	85,0	125	70 H8	49,50	
P1V-A260G0022••	395,0	126	110	12,5	176	140	45,0	45,0	15	15	151,0	210	152 H8	86,90	
P1V-A260G0013••	395,0	126	110	12,5	176	140	45,0	45,0	15	15	151,0	210	152 H8	86,90	
P1V-A260G0008••	498,0	185	154	16,0	255	165	52,5	52,5	18	20	197,5	320	180 H8	130,00	
P1V-A360G0050••	340,0	95	80	10,5	130	120	40,0	40,0	8	11	116,0	180	115 H8	62,17	
P1V-A360G0022••	401,0	126	110	12,5	176	140	45,0	45,0	15	15	151,0	210	152 H8	86,90	
P1V-A360G0013••	456,0	153	138	13,5	230	155	45,0	45,0	18	20	179,5	280	170 H8	110,10	
P1V-A360G0006••	504,0	185	154	16,0	255	165	52,5	52,5	18	20	197,5	320	180 H8	130,00	


Order code	B4	B 5	C1	C2	C 3
P1V-A160G0043••	80,0	160	8 H8	28,3	25 H7
P1V-A160G0020••	98,5	160	8 H8	28,3	25 H7
P1V-A160G0010••	138,0	160	10 H8	38,3	35 H7
P1V-A160G0008••	138,0	160	10 H8	38,3	35 H7
P1V-A260G0050••	80,0	200	8 H8	28,3	25 H7
P1V-A260G0022••	138,0	200	10 H8	38,3	35 H7
P1V-A260G0013••	138,0	200	10 H8	38,3	35 H7
P1V-A260G0008••	195,0	200	14 H8	48,8	45 H7
P1V-A360G0050••	98,5	200	8 H8	28,3	25 H7
P1V-A360G0022••	138,0	200	10 H8	38,3	35 H7
P1V-A360G0013••	169,0	200	12 H8	45,3	42 H7
P1V-A360G0006••	195,0	200	14 H8	48,8	45 H7

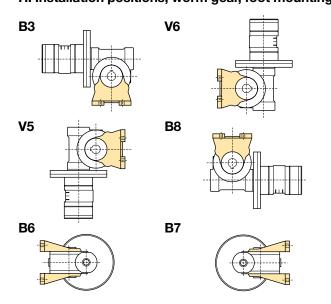
^{••:} see previous page for installation positions

NOTE! All technical data are based on a working pressure of 6 bar and with oil.

Speed tolerance accuracy is -+10%.

H: Reversible motor with worm gear, foot mounting

Max power	Max I speed*	Nominal speed	Nominal torque	Min start torque	Max permanent torque**	Types of self- locking	Air consumption at max power	Connection	Min pipe ID inlet/ outlet	Weight Kg	Order code
Series F							,			3	
1,600	430	320	38	40	44	1	32	G1/2	15	7,2	P1V-A160H0043 • •
1,600	200	150	77	65	125	2	32	G1/2	15	10,2	P1V-A160H0020 • •
1,600	95	70	154	177	250	3	32	G1/2	15	20,5	P1V-A160H0010 • •
1,600	75	55	180	130	225	3	32	G1/2	15	20,5	P1V-A160H0008 • •
Series F	P1V-A260)									
2,600	500	350	62	90	125	1	60	G3/4	19	11,0	P1V-A260H0050 • •
2,600	220	150	133	206	285	1	60	G3/4	19	21,0	P1V-A260H0022 • •
2,600	125	85	224	330	430	2	60	G3/4	19	21,0	P1V-A260H0013 • •
2,600	62	44	415	308	660	3	60	G3/4	19	57,0	P1V-A260H0008 • •
Series F	P1V-A360)									
3,600	500	300	98	113	125	1	97	G1	25	22,5	P1V-A360H0050 • •
3,600	220	130	224	230	285	1	97	G1	25	33,0	P1V-A360H0022 • •
3,600	125	75	368	317	595	2	97	G1	25	49,0	P1V-A360H0013 • •
3,600	62	37	670	480	660	3	97	G1	25	65,5	P1V-A360H0006 • •


^{*} maximum admissible speed (idling)

Note!

•• specify installation position in the order code as in the illustrations below.

Example: P1V-A160H0043B3

H: Installation positions, worm gear, foot mounting

Note: Oil-bath gearboxes mean that the installation position must be decided in advance. The installation position determines the volume of oil in the gearbox and location of oil filling and drain plugs.

Self-locking

Dynamic self-locking means that the force acting on the output shaft of the gear can not turn the gear further when the air motor is stopped. Dynamic self-locking is only possible when the gear ratio is high, and at low speeds. None of our worm drive gears are completely self-locking in dynamic conditions.

Static self-locking means that the force acting on the output shaft of the gear can not begin to turn the shaft.

When loads with considerable momentum are driven, it is necessary to have a braking time sufficient to stop the gearbox from being overloaded. It is extremely important that the maximum permitted torque is not exceeded.

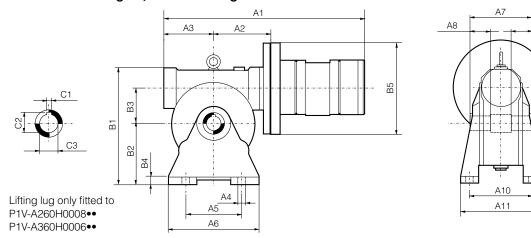
Tip: Braking of the air motor can be arranged by either slowly restricting the air supply to the motor until it is completely shut off, or by slowly reducing the supply pressure to zero.

Types of Self-locking

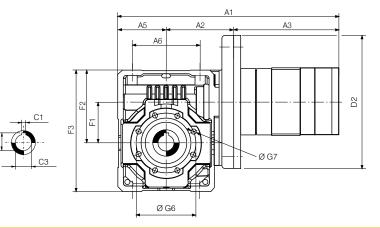
- 1. Static, not self-locking
- 2. Static, self-locking quicker return under vibration not dynamically self-locking
- 3. Static, self-locking return only possible under vibration good dynamic self-locking

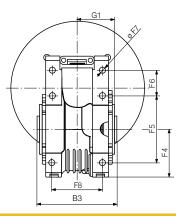
Important!

Since it is practically impossible to guarantee total self-locking, an external brake must be used to guarantee that vibration can not cause an output shaft to move.



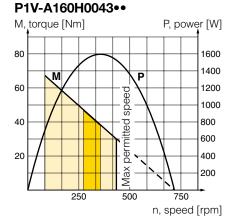
^{**} Max gear box torque for a permanent load


Α9

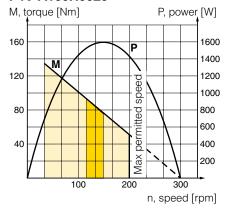

Dimensions (mm)

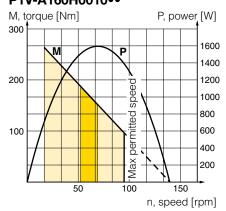
H: Motor with worm gear, foot mounting

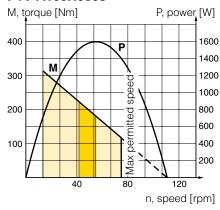
Order code	A1	A2	A3	A4	A5 A6	A7	A8	A9	A10	A11	B1	B2	В3	
P1V-A160H0043••	259,5	70	63	8,5	63 110	82	22,5	22,5	98,5	124	162	82	49,50	
P1V-A260H0008••	498,0	185	154	16,0	220 310	165	52,5	52,5	191,0	245	398	195	130,00	
P1V-A360H0006••	504,0	185	154	16,0	220 310	165	52,5	52,5	191,0	245	398	195	130,00	
	B4	B 5	C1	C2	C3									
P1V-A160H0043••	12	160	8 H8	28,3	25 H7									
P1V-A260H0008••	18	200	14 H8	48,8	3 45 H7									

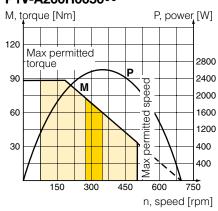

A 1	A2	A3	A5	A6	B3	D2	F1	F2	F3	F4	F5	F6	Ø F7
294,5	95	127	72,5	102	120	160	62,2	110,0	182,5	72,5	102	37,5	9,0
355,0	128	127	100,0	144	140	160	86,9	145,5	245,5	100,0	144	45,5	11,5
355,0	128	127	100,0	144	140	160	86,9	145,5	245,5	100,0	144	45,5	11,5
333,5	102	159	72,5	102	120	200	62,2	110,0	182,5	72,5	102	37,5	9,0
387,0	128	159	100,0	144	140	200	86,9	145,5	245,5	100,0	144	45,5	11,5
387,0	128	159	100,0	144	140	200	86,9	145,5	245,5	100,0	144	45,5	11,5
334,5	102	165	72,5	102	120	200	62,2	110,0	182,5	72,5	102	37,5	9,0
393,0	128	165	100,0	144	140	200	86,9	145,5	245,5	100,0	144	45,5	11,5
433,0	143	165	125,0	174	155	200	110,1	183,0	308,0	125,0	184	58,0	14,0
		~ ~ ~		~ ~-	O 4 //			00 /					
F8	G1	Ø G6	Q	Ø G7	C1 (I	H8)	C2	C3 (I	H/)				
F8 76	G1 56,0	Ø G6 90		depth 14	C1 (I		28,3	C3 (1 25					
			M8 c			,		•	5				
76	56,0	90	M8 o	depth 14	8)	28,3	25	5				
76 101	56,0 68,0	90 130	M8 c M10 M10	depth 14 depth 18	8 10))	28,3 38,3	25 35	5				
76 101 101	56,0 68,0 68,0	90 130 130	M8 c M10 M10 M8 c	depth 14 depth 18 depth 18	8 10 10))	28,3 38,3 38,3	25 35 35	5				
76 101 101 76	56,0 68,0 68,0 53,0	90 130 130 90	M8 c M10 M10 M8 c M10	depth 14 depth 18 depth 18 depth 14	8 10 10 8)	28,3 38,3 38,3 28,3	25 35 35 25	5				
76 101 101 76 101	56,0 68,0 68,0 53,0 68,0	90 130 130 90 130	M8 c M10 M10 M8 c M10 M10	depth 14 depth 18 depth 18 depth 14 depth 18	8 10 10 8)))	28,3 38,3 38,3 28,3 38,3	25 35 35 25 35	5				
76 101 101 76 101	56,0 68,0 68,0 53,0 68,0 68,0	90 130 130 90 130 130	M8 c M10 M10 M8 c M10 M10 M8 c	depth 14 depth 18 depth 18 depth 14 depth 18 depth 18	8 10 10 8 10)	28,3 38,3 38,3 28,3 38,3 38,3	25 35 35 25 35 35	5				
	294,5 355,0 355,0 333,5 387,0 387,0 334,5 393,0 433,0	294,5 95 355,0 128 355,0 128 333,5 102 387,0 128 387,0 128 334,5 102 393,0 128 433,0 143	294,5 95 127 355,0 128 127 355,0 128 127 333,5 102 159 387,0 128 159 387,0 128 159 334,5 102 165 393,0 128 165 433,0 143 165	294,5 95 127 72,5 355,0 128 127 100,0 355,0 128 127 100,0 333,5 102 159 72,5 387,0 128 159 100,0 387,0 128 159 100,0 334,5 102 165 72,5 393,0 128 165 100,0 433,0 143 165 125,0	294,5 95 127 72,5 102 355,0 128 127 100,0 144 355,0 128 127 100,0 144 333,5 102 159 72,5 102 387,0 128 159 100,0 144 387,0 128 159 100,0 144 334,5 102 165 72,5 102 393,0 128 165 100,0 144 433,0 143 165 125,0 174	294,5 95 127 72,5 102 120 355,0 128 127 100,0 144 140 355,0 128 127 100,0 144 140 333,5 102 159 72,5 102 120 387,0 128 159 100,0 144 140 387,0 128 159 100,0 144 140 334,5 102 165 72,5 102 120 393,0 128 165 100,0 144 140 433,0 143 165 125,0 174 155	294,5 95 127 72,5 102 120 160 355,0 128 127 100,0 144 140 160 355,0 128 127 100,0 144 140 160 333,5 102 159 72,5 102 120 200 387,0 128 159 100,0 144 140 200 387,0 128 159 100,0 144 140 200 334,5 102 165 72,5 102 120 200 393,0 128 165 100,0 144 140 200 433,0 143 165 125,0 174 155 200	294,5 95 127 72,5 102 120 160 62,2 355,0 128 127 100,0 144 140 160 86,9 355,0 128 127 100,0 144 140 160 86,9 333,5 102 159 72,5 102 120 200 62,2 387,0 128 159 100,0 144 140 200 86,9 334,5 102 165 72,5 102 120 200 62,2 393,0 128 165 100,0 144 140 200 86,9 433,0 143 165 125,0 174 155 200 110,1	294,5 95 127 72,5 102 120 160 62,2 110,0 355,0 128 127 100,0 144 140 160 86,9 145,5 355,0 128 127 100,0 144 140 160 86,9 145,5 333,5 102 159 72,5 102 120 200 62,2 110,0 387,0 128 159 100,0 144 140 200 86,9 145,5 334,5 102 165 72,5 102 120 200 62,2 110,0 393,0 128 165 100,0 144 140 200 86,9 145,5 433,0 143 165 125,0 174 155 200 110,1 183,0	294,5 95 127 72,5 102 120 160 62,2 110,0 182,5 355,0 128 127 100,0 144 140 160 86,9 145,5 245,5 355,0 128 127 100,0 144 140 160 86,9 145,5 245,5 333,5 102 159 72,5 102 120 200 62,2 110,0 182,5 387,0 128 159 100,0 144 140 200 86,9 145,5 245,5 334,5 102 165 72,5 102 120 200 62,2 110,0 182,5 393,0 128 165 100,0 144 140 200 86,9 145,5 245,5 393,0 128 165 100,0 144 140 200 86,9 145,5 245,5 433,0 143 165 125,0 174 155	294,5 95 127 72,5 102 120 160 62,2 110,0 182,5 72,5 355,0 128 127 100,0 144 140 160 86,9 145,5 245,5 100,0 355,0 128 127 100,0 144 140 160 86,9 145,5 245,5 100,0 333,5 102 159 72,5 102 120 200 62,2 110,0 182,5 72,5 387,0 128 159 100,0 144 140 200 86,9 145,5 245,5 100,0 387,0 128 159 100,0 144 140 200 86,9 145,5 245,5 100,0 334,5 102 165 72,5 102 120 200 62,2 110,0 182,5 72,5 393,0 128 165 100,0 144 140 200 86,9 145,5 245,5 </th <th>294,5 95 127 72,5 102 120 160 62,2 110,0 182,5 72,5 102 355,0 128 127 100,0 144 140 160 86,9 145,5 245,5 100,0 144 355,0 128 127 100,0 144 140 160 86,9 145,5 245,5 100,0 144 333,5 102 159 72,5 102 120 200 62,2 110,0 182,5 72,5 102 387,0 128 159 100,0 144 140 200 86,9 145,5 245,5 100,0 144 387,0 128 159 100,0 144 140 200 86,9 145,5 245,5 100,0 144 334,5 102 165 72,5 102 120 200 62,2 110,0 182,5 72,5 102 393,0 128 165</th> <th>294,5 95 127 72,5 102 120 160 62,2 110,0 182,5 72,5 102 37,5 355,0 128 127 100,0 144 140 160 86,9 145,5 245,5 100,0 144 45,5 355,0 128 127 100,0 144 140 160 86,9 145,5 245,5 100,0 144 45,5 333,5 102 159 72,5 102 120 200 62,2 110,0 182,5 72,5 102 37,5 387,0 128 159 100,0 144 140 200 86,9 145,5 245,5 100,0 144 45,5 387,0 128 159 100,0 144 140 200 86,9 145,5 245,5 100,0 144 45,5 334,5 102 165 72,5 102 120 200 62,2 110,0 182,5</th>	294,5 95 127 72,5 102 120 160 62,2 110,0 182,5 72,5 102 355,0 128 127 100,0 144 140 160 86,9 145,5 245,5 100,0 144 355,0 128 127 100,0 144 140 160 86,9 145,5 245,5 100,0 144 333,5 102 159 72,5 102 120 200 62,2 110,0 182,5 72,5 102 387,0 128 159 100,0 144 140 200 86,9 145,5 245,5 100,0 144 387,0 128 159 100,0 144 140 200 86,9 145,5 245,5 100,0 144 334,5 102 165 72,5 102 120 200 62,2 110,0 182,5 72,5 102 393,0 128 165	294,5 95 127 72,5 102 120 160 62,2 110,0 182,5 72,5 102 37,5 355,0 128 127 100,0 144 140 160 86,9 145,5 245,5 100,0 144 45,5 355,0 128 127 100,0 144 140 160 86,9 145,5 245,5 100,0 144 45,5 333,5 102 159 72,5 102 120 200 62,2 110,0 182,5 72,5 102 37,5 387,0 128 159 100,0 144 140 200 86,9 145,5 245,5 100,0 144 45,5 387,0 128 159 100,0 144 140 200 86,9 145,5 245,5 100,0 144 45,5 334,5 102 165 72,5 102 120 200 62,2 110,0 182,5

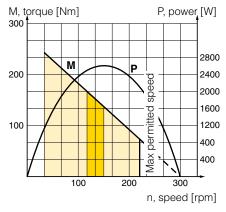
^{••:} see previous page for installation positions

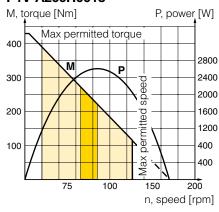

As standard, the motor has a hollow shaft with key slot. Please refer to page 44 for a dimension sketch of the single ended and double ended shafts and for additional flange on the opposite side.

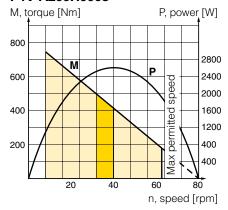

P1V-A160F0043•• P1V-A160G0043••


P1V-A160F0020•• P1V-A160G0020•• P1V-A160H0020••


P1V-A160F0010••
P1V-A160G0010••
P1V-A160H0010••

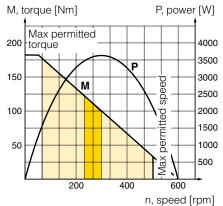

P1V-A160F0008•• P1V-A160G0008•• P1V-A160H0008••

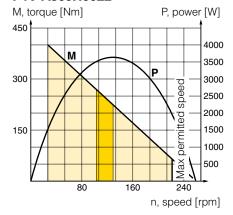

P1V-A260F0050•• P1V-A260G0050•• P1V-A260H0050••


P1V-A260F0022•• P1V-A260G0022•• P1V-A260H0022••

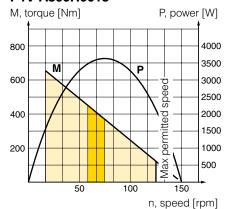
P1V-A260F0013•• P1V-A260G0013•• P1V-A260H0013••

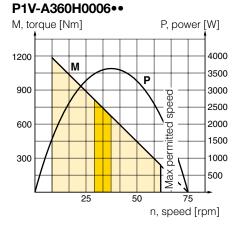
P1V-A260F0008•• P1V-A260G0008•• P1V-A260H0008••

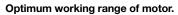

Possible working range of motor.


Optimum working range of motor.

Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear


P1V-A360F0050•• P1V-A360G0050•• P1V-A360H0050••


P1V-A360F0022•• P1V-A360G0022•• P1V-A360H0022••


P1V-A360F0013•• P1V-A360G0013•• P1V-A360H0013••

P1V-A360F0006 • • P1V-A360G0006 • •

Possible working range of motor.

Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear

Permitted shaft loadings

Radial forces

Depending on the application, the drive shaft of the gearbox can be subjected to various radial forces, which can be calculated as follows:

$$F_{rad} = 2000 \times M \times K_r / d$$

 $\begin{array}{ll} F_{\text{rad}} & \text{Radial force (N)} \\ M & \text{Torque (Nm)} \end{array}$

d Diameter of wheel, pulley, sprocket or

gear wheel (mm)

Kr = 1 Sprocket constant Kr = 1.25 Gear wheel constant Kr = 1.5 - 2.5 Vee-belt pulley constant

Depending on the point of application of the force (please refer to the adjacent figure), the following two cases are found:

a. The force is applied to the centre of the output shaft, as in figure 3. This value can be read off on the table below, where consideration must be given to the following:

$$F_{radc} \leq F_{rt}$$

b. The force is applied at a distance x, as in figure 4. This value can be calculated as follows:

$$F_{radx} = F_{rt} \times a / (b + X)$$
 L/2 < X < c

 F_{rt} Permissible radial force on centre of output-shaft (N)

a Gear constant
b Gear constant
c Gear constant

X Distance from shoulder on shaft to point of application of force (mm)

All values are found in the table below.

The following should be considered, however:

$$F_{radc} \leq F_{radx}$$

Motor	а	b	F _{rt}
P1V-A160•0043••	99	69	3450
P1V-A160•0020••	132	102	4700
P1V-A160•0010••	147	117	7000
P1V-A160•0008••	147	117	7000
P1V-A260•0050••	99	69	3450
P1V-A260•0022••	147	117	7000
P1V-A260•0013••	147	117	7000
P1V-A260•0008••	182	142	13800
P1V-A360•0050••	132	102	4700
P1V-A360•0022••	147	117	7000
P1V-A360•0013••	171	134	8000
P1V-A360•0006••	182	142	13800

- Motor with worm gear (functions F, G and H)
- •• Installation position, optional

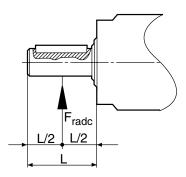


Fig. 4: Force applied at centre of shaft

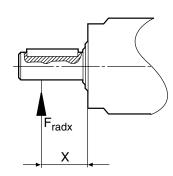
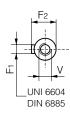


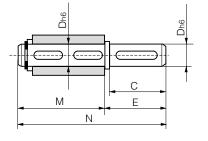
Fig. 5: Force applied at distance X

Axial forces

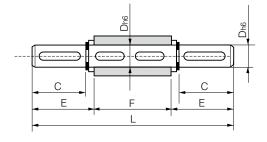
The maximum permissible axial force can be calculated as follows:

$$F_{ax} = F_{rt} \times 0.2$$




Shaft and additional flange with keys for motor with worm gear

Motor type	Single-ended shaft Order code	Weight kg	Double-ended shaft Order code	Weight kg	Close flange	Wide flange
Serie P1V-A160						
P1V-A160•0043••	9121510242	0,60	9121510247	0,77	-	-
P1V-A160+0020++	9121510243	0,75	9121510248	0,95	P1V-A/830930	P1V-A/830929
P1V-A160•0010••	9121510244	1,60	9121510249	2,00	P1V-A/830932	P1V-A/830931
P1V-A160•0008••	9121510244	1,60	9121510249	2,00	P1V-A/830932	P1V-A/830931
Serie P1V-A260						
P1V-A260•0050••	9121510242	0,60	9121510247	0,77	P1V-A/830930	P1V-A/830929
P1V-A260+0022++	9121510244	1,60	9121510249	2,00	P1V-A/830932	P1V-A/830931
P1V-A260•0013••	9121510244	1,60	9121510249	2,00	P1V-A/830932	P1V-A/830931
P1V-A260+0008++	9121510246	3,20	9121510251	4,10	-	-
Serie P1V-A360						
P1V-A360•0050••	9121510243	0,75	9121510248	0,95	P1V-A/830930	P1V-A/830929
P1V-A360+0022++	9121510244	1,60	9121510249	2,00	P1V-A/830932	P1V-A/830931
P1V-A360•0013••	9121510245	2,80	9121510250	3,60	P1V-A/830935	P1V-A/830934
P1V-A360+0006++	9121510246	3,20	9121510251	4,10	-	-


- Motor with worm gear (functions F, G and H)
- •• Installation position, optional

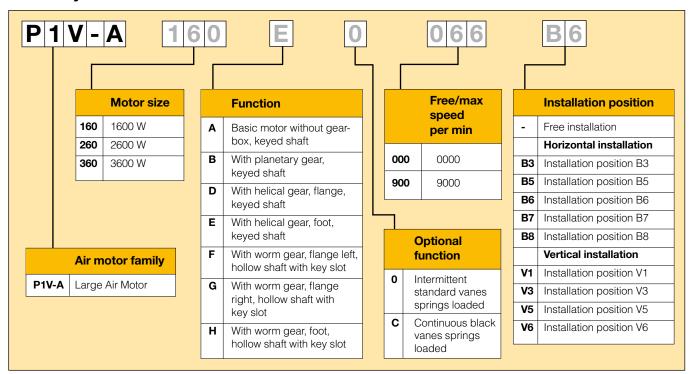
Dimensions (mm)

Single-ended shaft

Order code	С	D	E	F1	F2	М	N	V
9121510242	60	25	65	8	28,0	89	154	M8x20
9121510243	60	25	65	8	28,0	127	192	M8x20
9121510244	60	35	65	10	38,0	149	214	M10x25
9121510245	75	42	80	12	45,0	164	244	M12x32
9121510246	80	45	85	14	48,5	176	261	M12x32

Double-ended shaft

Order code	С	D	E	F	F1	F2	L	V
9121510247	60	25	63,20	82	8	28,0	208,4	M8x20
9121510248	60	25	63,20	120	8	28,0	246,4	M8x20
9121510249	60	35	64,00	140	10	38,0	268,0	M10x25
9121510250	75	42	79,25	155	12	45,0	313,5	M12x32
9121510251	80	45	84,75	165	14	48,5	334,5	M12x32


Material specification

Shaft: High grade steel

Key: Hardened steel

Order key

Note: This model code can not be used for creating new part numbers. All possible combinations between motor size, function and free speed are in all previous pages.

Note: Oil-bath gearboxes mean that the installation position must be decided in advance. The installation position determines the volume of oil in the gearbox and location of oil filling and drain plugs.

A: Free installation positions, basic motor

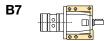
B: Free installation positions, planetary gear

D: Free installation positions, helical gear and flange

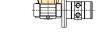
B5

E: Installation positions, helical gear and foot

V5



F: Installation pos., worm gear and flange, left-hand



B7

G: Installation pos., worm gear and flange, right-hand

H: Installation positions, worm gear and foot

B3

B6

Lubrication and service life

Oil and oil mist are things which one tries to avoid to get the best possible working environment. In addition, purchasing, installation and maintenance of oil mist equipment costs money and, above all, time to achieve optimum lubrication effect.

The P1V-A motor is equipped with vanes for intermittent operation as standard for most common applications.

Service interval

The first service is due after approximately 500 hours of operation. After the first service, the service interval is determined by the degree of vane wear. The table below shows new dimensions.

Air motor	Dimensions on new vanes X [mm]	
P1V-A160	16	
P1V-A260	20	
P1V-A360	30	

The following normal service intervals should be applied to in order to guarantee problem-free operation in air motors working continuously at load speeds.

Intermittent lubrication operation of P1V-A basic motors

Duty cycle 70%

Max. duration of intermittent use 15 minutes
Oil volume 1 drop oil/Nm³

Filtering 40 μm app. 750 hours operation Filtering 5 μm app. 1,000 hours operation

Continuous lubrication operation of P1V-A basic motors

Oil volume 1 drop oil/Nm³

Filtering 40 μm app. 1,000 hours operation Filtering 5 μm app. 2,000 hours operation

Continuous lubrication operation of P1V-A basic motors

Filtering 40 μm app. 750 hours operation Filtering 5 μm app. 1,000 hours operation

Service kits

The following kits are available for the basic motors, consisting of vanes, O-rings and springs:

Service kits, vanes for intermittent lubrication operation, option "0"

For motor	Order code
P1V-A160A0900	9121720630
P1V-A260A0700	9121720631
P1V-A360A0600	9121720632

Service kits, vanes for continuous lubrication operation, option "C"

For motor	Order code
P1V-A160AC900	9121720633
P1V-A260AC700	9121720634
P1V-A360AC600	9121720635

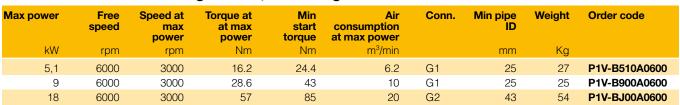
For more information about our maintenance services, please contact your local parker sales office.

Very Large Air Motors

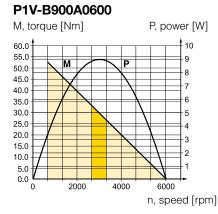
P1V-B: 5.1, 9 & 18 kW

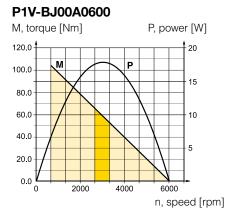
P1V-B Very Large Air Motors

Contents	Page
Very Large Air Motors Material and technical specification	
Technical and material data	50


P1V-B Very Large Air Motors

Note: All technical data are based on a working pressure of 6 bar and with oil. Speed tolerance accuracy is -+10%.


Very Large Air Motors


These large motors are designed for use in the most arduous applications, requiring considerable power, torque, robustness and reliability.

Reversible motor without gear box, IEC Flange

P1V-B510A0600 M, torque [Nm] P, power [W] 40.0 35.0 - 5 30.0 25.0 20.0 3 15.0 2 10.0 5.0 2000 4000 n, speed [rpm]

Possible working range of motor.

Optimum working range of motor.

Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear

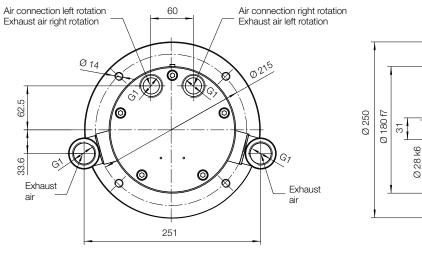
Technical data

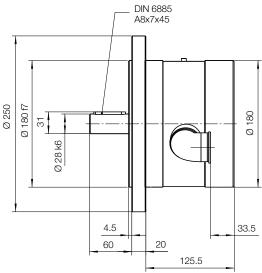
Air motor size & type	P1V-B510	P1V-B900	P1V-BJ00			
Nominal power (watts)	5100	9000	18000			
Working pressure (bar)	3 to 7					
Working temperature (°C)	-20 to +110					
Ambient temperature (°C)	-20 to +110					
Air flow required (NI/min)	6200 10000 20000					
Min pipe ID, inlet (mm)	25 25 43					
Min pipe ID, outlet (mm)	25	25	43			

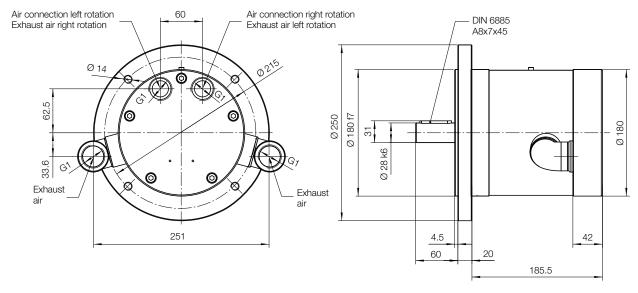
Choice of treatment unit: recommended min air flow (I/min) at p1 7.5 bar and 0.8 bar pressure drop

6400 10300 204

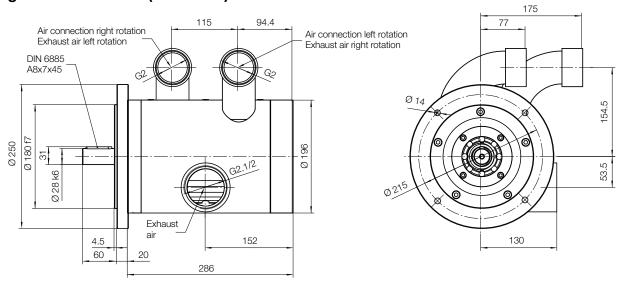
	0-100	10000	20400				
Choice of valve: recommended min nominal air flow (I/min) at p1 6 bar and 1 bar pressure drop							
	6600 10600 20800						
Medium	40µm filtered, oil mist lubricated compressed air						
Oil operation	1-2 drop per cube meter, ISO8573-1 purity class 35						
Recommended oil	Foodstuffs industry Klüber oil 4 UH 1-32 N						
Shaft radial force (N)	7500 7500 7500						
Shaft axial force (N)	11000	11000	11000				


Material specification


-					
Air motor size & type	P1V-B510	P1V-B900	P1V-BJ00		
Motor housing	Cast iron, synthetic paint, silver grey color				
Shaft	High grade steel				
Key	Hardened steel				
External seal	Nitrile rubber, NBR				
Internal steel parts	High grade steel				
Vanes		Patented, no data			


Dimensions (mm)

Flange motor IEC112A (P1V-B510)



Flange motor IEC112A (P1V-B900)

Flange motor IEC112A (P1V-BJ00)

Parker Worldwide

Europe, Middle East, Africa

AE – United Arab Emirates,

Tel: +971 4 8127100 parker.me@parker.com

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt

Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ - Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BY - Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CH – Switzerland, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ - Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE - Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI - Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR - France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR – Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com

HU – Hungary, Budapest Tel: +36 1 220 4155 parker.hungary@parker.com IE - Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT – Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ - Kazakhstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

NL - The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO - Norway, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL - Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT – Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE - Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK - Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL - Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR - Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA - Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK - United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

ZA – South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

North America

CA – Canada, Milton, Ontario Tel: +1 905 693 3000

US – USA, Cleveland Tel: +1 216 896 3000

Asia Pacific

AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777

CN - China, Shanghai Tel: +86 21 2899 5000

HK – Hong Kong Tel: +852 2428 8008

IN - India, Mumbai Tel: +91 22 6513 7081-85

JP – Japan, Tokyo Tel: +81 (0)3 6408 3901

KR – South Korea, Seoul Tel: +82 2 559 0400

MY - Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ - New Zealand, Mt Wellington

Tel: +64 9 574 1744

SG - Singapore Tel: +65 6887 6300

TH - Thailand, Bangkok Tel: +662 186 7000

TW - Taiwan, Taipei Tel: +886 2 2298 8987

South America

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

BR - Brazil, Sao Jose dos Campos Tel: +55 800 727 5374

CL - Chile, Santiago Tel: +56 2 623 1216

MX - Mexico, Apodaca Tel: +52 81 8156 6000

European Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

© 2014 Parker Hannifin Corporation. All rights reserved.

Catalogue PDE2670TCUK - V2 - November 2014

Parker Hannifin Ltd.

Tachbrook Park Drive Tachbrook Park, Warwick, CV34 6TU United Kingdom

Tel.: +44 (0) 1926 317 878 Fax: +44 (0) 1926 317 855 parker.uk@parker.com www.parker.com

Your local authorized Parker distributor

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Air Motors

P1V-M Robust Type 0.2, 0.4, 0.6, 0.9 & 1.2 kW

Catalogue PDE2539TCUK November 2014

Features	Air motor	Hydraulic motor	Electric motor	Electric motor regulated	Electric motor regulated with feed back
Overload safe	***	***	*	**	***
Increased torque at higher loads	***	**	*	**	***
Easy to limit torque	***	***	*	*	***
Easy to vary speed	***	***	*	***	***
Easy to limit power	***	***	*	**	***
Reliability	***	***	***	***	***
Robustness	***	***	*	*	*
Installation cost	***	*	**	**	**
Ease of service	***	**	*	*	*
Safety in damp environments	***	***	*	*	*
Safety in explosive atmospheres	***	***	*	*	*
Safety risk with electrical installations	***	***	*	*	*
Risk of oil leak	***	*	***	***	***
Hydraulic system required	***	*	***	***	***
Weight	**	***	*	**	*
Power density	**	***	*	*	*
High torque for size	**	***	*	*	*
Noise level during operation	*	***	**	**	**
Total energy consumption	*	**	***	***	***
Service interval	*	**	***	***	***
Compressor capacity required	*	***	***	***	***
Purchase price	*	*	***	***	**
Accuracy, speed	*	**	*	**	***
Regulating dynamic	*	*	*	*	***
Communication	*	*	*	***	***

^{* =} good, **=average, ***=excellent

Important

Before carrying out service activities, make sure the air motor is vented. Before disassembling the motor, disconnect the primary air hose to ensure that the air supply is interrupted.

Note

All technical data in the catalogue are typical

The air quality is a major factor in the service life of the motor, see ISO 8573-1.

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

SALE CONDITIONS

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered into by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

Contents	Page
The steps to size	4 - 9
Air quality & lubrification	10 - 11
Features	12
Robust air motors P1V-M	13
Material and technical specification	14
Choice of air motor	15
Robust air motors without gear boxes, 200 to 1200 watts	16
Dimensions	17
Robust air motors with gear box 200 watts	18
Dimensions	19
Robust air motors with gear box 400 watts	20
Dimensions	21
Robust air motors with gear box 600 watts	22
Dimensions	23
Robust air motors with gear box 900 watts	24
Dimensions	25
Robust air motors with gear box 1200 watts	26
Dimensions	27
Permitted shaft loadings	28
Order key	29
Service - Easier - Faster - Cheaper	30 - 31
P3X Air Preparation System	32
Introduction to ATEX directive	33 - 35
Declaration of Comformity	36

P1V-M - Robust Air Motors

Choosing the correct air motor for your application

1 Which drive principle of the air motor is suitable for your application?

- Air vane motor are suitable for regular operating cycles, speed is very small e.g. 16 rpm
- Tooth gear air motor or turbines are more suitable for continuous operation, 24 hours non-stop, speed is in a upper range, up to 140,000 rpm
- Oil free operation is often an option for these three principles of air motors.

Which motor materials are suitable for your application?

- Will the air motor work in a normal production area
- Or in a paper industry
- Or in the food processing industry, in contact or not with food
- Or in underwater usage
- Or in the medical, pharmaceutical industries
- Or in potentially explosive areas
- Others, please describe your environment

3 How do you calculate the motor power taking the application conditions into consideration?

- 1. Which rotational direction? Clockwise, anti-clockwise, reversible?
- 2. Air pressure working range? Which air class quality is available?
- 3. Which torque and which speed under load do you expect to obtain?
- 4. Calculate the basic power with the formula

P = M x n / 9550 with P power output in kW, M nominal torque in Nm, n nominal speed in rpm

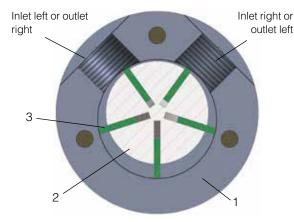
- 5. Check performance data of air motors in our catalogues. Note that all data is at 6 bar in the inlet of the air motor, max 3 meters for tubes and oil lubricated operations.
- 6. To adapt the difference of air pressure with your operation conditions, please check graphs in our catalogues and how to do it.
- 7. or you can adapt the need of air to fit your operation conditions by throttling the outlet flow in the air motor you will reduce speed without loss of torque.
- 8. Check if you need an oil free or not working operation. 1 to 2 drops of oil per cube meter are needed to optimize performance and life time of air motors. Oil free operation will decrease by 10 to 15% the performance of air motors.

4 How do you integrate your air motor in your system?

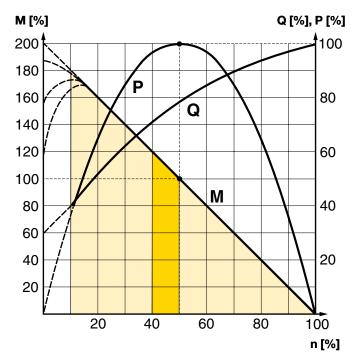
- In which position is the air motor used?
- Do you need to use a brake?
- Do you want to use your own gear box and put it somewhere else in the machine?
- Do you need extra components like fittings, tubes, valves and FRLs?

6 How do you ensure a long life and high performance of the air motor?

- Ensure you air quality is in accordance with our specifications, oil or oil free lubrication operations.
- Keep the recommended maintenance intervals


6 How do you determine the purchasing and running costs after the air motor installation?

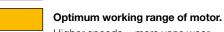
- Keep same level of your air quality.


Principles of air motor functioning

5 1 4 6 2 4 3 7

- 1 Rotor cylinder
- 2 Rotor
- 3 Vanes
- 4 End piece with bearing
- 5 Mounting screw for motor
- 6 Removable rear piece
- 7 Pressure unloading

Torque, power and air consumption graphs



The curve is for 6 bar

P = power Q = air consumption

M = torque n = speed

Possible working range of motor.

Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear

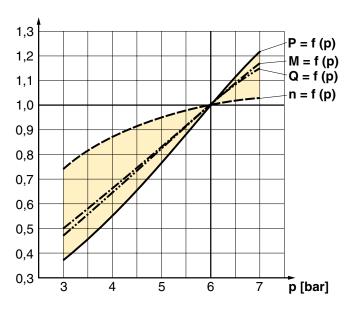
There are a number of designs of air motors. Parker has chosen to use the vane rotor design, because of its simple design and reliable operation. The small external dimensions of vane motors make them suitable for all applications.

The principle of the vane motor is that a rotor with a number of vanes is enclosed in a rotor cylinder. The motor is supplied with compressed air through one connection and air escapes from the other connection. The air pressure always bears at right angles against a surface. This means that the torque of the motor is a result of the vane surfaces and the air pressure. a family of curves as above, from which torque, power and air consumption can be read off as a function of speed. Power is zero when the motor is stationary and also when running at free speed (100%) with no load. Maximum power (100%) is normally developed when the motor is braked to approximately half the free speed (50%).

Torque at free speed is zero, but increases as soon as a load is applied, rising linearly until the motor stalls. As the motor can stop with the vanes in various positions, it is not possible to specify an exact starting torque. However, a minimum starting torque is shown in all tables.

Air consumption is greatest at free speed, and decreases with decreasing speed, as shown in the above diagram.

Introduction

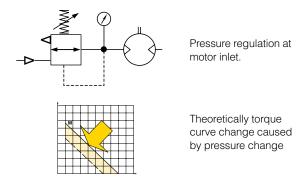

The performance of an air motor is dependent on the inlet pressure. At a constant inlet pressure, air motors exhibit the characteristic linear output torque / speed relationship. However, by simply regulating the air supply, using the techniques of throttling or pressure regulation, the output of an air motor can easily be modified. The most economical operation of an air motor (least wear, least air consumption, etc.) is reached by running close to nominal speed. By torque of M=0, the maximum speed (idle speed) is reached. Shortly before standstill (n - 0), the air motor reaches its maximum torque (Mmax = 2 x Mo). At nominal speed (nn), for example in the middle of the speed range, air motor reaches its maximum power output (Pmax).

Energy Efficiency

A pneumatic motor achieves its maximum power when it is operating as close as possible to its rated speed (50% of the rated idle speed). The energy balance is best in this area, because the compressed air is used efficiently.

Air pressure correction factors

To adapt the difference of air pressure with your operation conditions

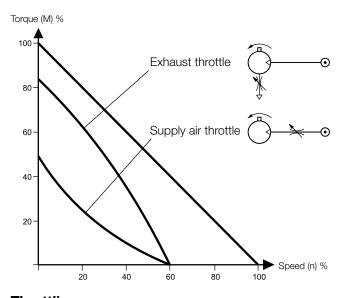

P = Power, M = Torque, Q = Air consumption, N = Speed

Pressure (p) bar / PSI	Power (P) %	Speed (n) %	Torque (M) %	Air Consumpt. (Q)
7 / 99	121	103	117	117
6 / 85	100	100	100	100
5/71	77	95	83	83
4 / 57	55	87	67	67
3 / 42	37	74	50	50

All catalogue data and curves are specified at a supply pressure of 6 bar to the motor. This diagram shows the effect of pressure on speed, specified torque, power and air consumption. Start off on the curve at the pressure used and then look up to the lines for power, torque and air consumption. Read off the correction factor on the Y axis for each curve and multiply this by the specified catalogue data in the table, or data read from the torque and power graphs.

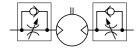
Example: at 4 bar supply pressure, the power is only 0.55 x power at 6 bar supply pressure. This example shows how strongly power falls if supply pressure is reduced. You must therefore ensure that the motor is supplied through pipes of sufficient diameter to avoid pressure drop.

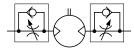
The speed and torque can also be regulated by installing a pressure regulator in the inlet pipe. This means that the motor is constantly supplied with air at lower pressure, which means that when the motor is braked, it develops a lower torque on the output shaft.



Speed regulation, air flow reduction

Every size reduction or restriction on the air line, whether of the supply hose itself or fittings, before the air motor affects the amount of the supplied air. By throttling you reduce the speed of your motor and simultaneously, the required torque. That means that you reduce the motor performance. The most common way to reduce the speed of a motor is to install a flow control valve in the air outlet, you can set the speed without loss of the torque. When the motor is used in applications where it must reverse and it is necessary to restrict the speed in both directions, flow control valves with by-pass should be used in both directions. If the inlet air is restricted, the air supply is restricted and the free speed of the motor falls, but there is full pressure on the vanes at low speeds. This means that we get full torque from the motor at low speeds despite the low air flow. Since the torque curve becomes "steeper". this also means that we get a lower torque at any given speed than would be developed at full air flow. The benefit of throttling the inlet is that air consumption is reduced, whereas throttling the exhaust air maintains a slightly higher starting torque.


P1V-M - Robust Air Motors


Throttling

Supply or exhaust throttling, non-reversible motor

Supply throttling, reversible motor

Exhaust throttling, reversible motor

Theoretically torque curve change caused by throttling

Component choice for air supply

Direction of motor rotation

The direction of rotation of reversible motors is obtained by supplying inlet L or inlet R with compressed air. The motor can be stopped and started continually without damage occuring.

Reversible means in both directions.

Compressed air quality

Oil and oil mist are avoided whenever possible to ensure a clean work environment. In addition, purchasing, installation and maintenance of oil equipment can be expensive. All users in all industries now try to avoid using components which have to be lubricated. The P1V air motors series are equipped with vanes for intermittent lubrication free operation as standard, which is the most common application of air motors.

Dry unlubricated compressed air

If unlubricated compressed air is used, the compressed air should comply with the purity standards below in order to guarantee the longest possible overall service life. If the unlubricated compressed air has a high water content, condensation forms inside the motor, causing corrosion in all internal components. A ball bearing can be destroyed in a remarkably short time if it comes into contact with a single water droplet. For indoor use, we recommend ISO8573-1 purity class 3.4.1. To achieve this, compressors must befitted with after coolers, oil filters, refrigerant air dryers and air filters. For indoor/outdoor use, we recommend ISO8573-1 purity class 1.2.1. To achieve this, compressors must be fitted with after coolers, oil filters, adsorption dryers and dust filters.

Oil mist

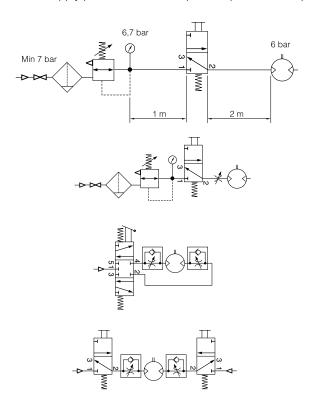
If oil mist is used (approx. 1 drop of oil per m³ of compressed air), the oil not only acts as a lubricant but also protects against corrosion. This means that compressed air with a certain water content may be used without causing corrosion problems inside the motor. ISO8573-1 purity class 3.-.5 may be used without difficulty. The following oils are recommended for use in the food stuffs industry: Shell Cassida Fluid HF 32 or Klüberoil 4 UH 1-32

ISO 8573-1 purity classes

Quality class	Cor particle size (µm)	ntaminants max. concentration (mg/m³)	Water max. pressure dew point (°C)	Oil max. concentration (mg.m³)
1	0.1	0.1	-70	0.01
2	1	1	-40	0.1
3	5	5	-20	1.0
4	15	8	+3	5.0
5	40	10	+7	25
6	-	-	+10	-

For example: compressed air to purity class 3.4.3. This means a 5 μ m filter (standard filter), dew point +3°C (refrigerant cooled) and an oil concentration of 1,0 mg oil/m³ (as supplied by a standard compressor with a standard filter).

P1V-M - Robust Air Motors


Air supply

Since the supply pressure at the air motor inlet port is of considerable importance for obtaining the power, speed and torque quoted in the catalogue, the recommendations below should be observed.

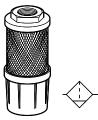
The following data must be complied with:

- Supply pressure: 7 bar
- Regulator pressure setting: 6.7 bar
- Pipe length between air treatment unit and valve: max. 1 m
- Pipe length valve and air motor: max 2 m

The pressure drop through the air preparation unit, pipe, valve means that 6 bar pressure is obtained at the motor supply port. Please refer to the correction diagram and factors to see what lower supply pressure means for power, speed and torque.

The air with which the motor is supplied must be filtered and regulated. Directional valves are needed to provide it with air, to get the motor to rotate when we want it to. These valves can be equipped with several means of actuation, such as electric, manual and pneumatic control. When the motor is used in a non-reversible application, it is sufficient to use a 2/2 or 3/2 valve function for supply. Either one 5/3 or two 3/2 valves functions are needed for a reversible motor, to ensure that the motor receives compressed air and the residual air outlet is vented. A flow control valve can be installed in the supply pipe to regulate the motor speed if the motor is not used as a reversible motor.

One flow control valve with by-pass is needed to regulate each direction of rotation if the motor is used as a reversible motor. The built-in check valve will then allow air from the residual air outlet to escape through the outlet port in the control valve. The compressed air supply must have sufficiently large pipes and valves to give the motor the maximum power. The motor needs 6 bar at the supply port all the time. For example, a reduction of pressure to 5 bar reduces the power developed to 77% and to 55% at 4 bar!


Silencing

Exhaust silencer

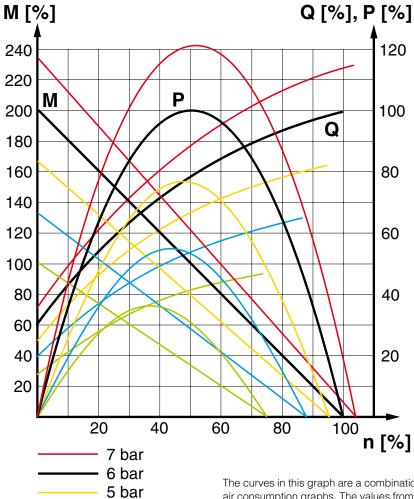
Central silencer

The noise from an air motor consists of both mechanical noise and a pulsating noise from the air flowing out of the outlet. The installation of the motor has a considerable effect on mechanical noise. It should be installed so that no mechanical resonance effects can occur. The outlet air creates a noise level which can amount to 115 dB(A) if the air is allowed to exhaust freely into the atmosphere. Various types of exhaust silencers are used to reduce this level. The most common type screws directly onto the exhaust port of the motor. Since the motor function causes the exhaust air to pulsate, it is a good idea to allow the air to exhaust into some kind of chamber first, which reduces the pulsations before they reach the silencer. The best silencing method is to connect a soft plastic hose to a large central silencer with the largest possible area, to reduce the speed of the outflowing air as far as possible.

NOTE! Remember that if a silencer which is too small or is blocked, generates back pressure on the outlet side of the motor, which reduces the motor power.

CE marking

The air motors are supplied as "Components for installation" – the installer is responsible for ensuring that the motors are installed safely in the overall system. Parker Pneumatic guarantees that its products are safe, and as a supplier of pneumatic equipment we ensure that the equipment is designed and manufactured in accordance with the applicable EU directive.


Most of our products are classed as components as defined by various directives, and although we guarantee that the components satisfy the fundamental safety requirements of the directives to the extent that they are our responsibility, they do not usually carry the CE mark.

The following are the currently applicable directives:

- Machinery Directive(essential health and safety requirements relating to the design and structure of machines and safety components)
- EMC Directive
- Simple Pressure Vessels Directive
- Low Voltage Directive
- ATEX Directive (ATEX = ATmosphere EXplosive)

Torque, power and air consumption graphs

P = power Q = air consumption
M = torque n = speed

____ 4 bar

— 3 bar

The curves in this graph are a combination of the torque, power and air consumption graphs. The values from the correction diagram have also been used for the curves for the different pressure values. The graph also shows that is it very important to ensure that the pressure supplied to the inlet port of the motor is correct, in order to allow the motor to work at maximum capacity. If the valve supplying a large motor is too small or if the supply line is underspecified, the pressure at the inlet port may be so low that the motor is unable to do its work. One solution would be to upgrade the valve and supply system, or alternatively you could replace the motor with a smaller motor with lower air consumption. The result would be increased pressure at the inlet port, which means that the smaller motor could carry out the necessary work. However, you may need to select a smaller motor with a lower free speed in order to obtain sufficient torque at the outgoing shaft.

Choice of an air motor, general

The motor to be used should be selected by starting with the torque needed at a specific spindle speed. In other words, to choose the right motor, you have to know the required speed and torque. Since maximum power is reached at half the motor's free speed, the motor should be chosen so that the point aimed at is as close as possible to the maximum power of the motor.

The design principle of the motor means that higher torque is generated when it is braked, which tends to increase the speed. This means that the motor has a kind of speed selfregulation function built in. Use the following graph to choose the correct motor size and the correct type of gear as appropriate. The graph contains the points for the maximum torque of each motor at maximum power. Put in your point on the graph and select a marked point above and to the right of the point you need.

Then check the characteristic graph of each motor to find more accurate technical data. Always select a motor where the data required is in the orange field. Also use the correction diagram to see what it would mean to use different air supply pressures or different air flow in the motor.

Tip: Select a motor which is slightly too fast and powerful, regulate its speed and torque with a pressure regulator and/or restriction to achieve the optimum working point.

Do you need any support to select the right air motor, please feel free to consult your local sales office.

Specifying air quality (purity) in accordance with ISO8573-1:2010, the international standard for Compressed Air Quality

ISO8573-1 is the primary document used from the ISO8573 series as it is this document which specifies the amount of contamination allowed in each cubic metre of compressed air.

ISO8573-1 lists the main contaminants as Solid Particulate, Water and Oil. The purity levels for each contaminant are shown separately in tabular form, however for ease of use, this document combines all three contaminants into one easy to use table.

	Solid Particulate			Water		Oil	
ISO8573-1:2010 CLASS	Maximum number of particles per m³			Mass	_ Vapour	Liquid	Total Oil (aerosol liquid and vapour)
	0,1 - 0,5 micron	0,5 - 1 micron	1 - 5 micron	Concentration mg/m³	Pressure Dewpoint	g/m ³	mg/m ³
0	As specified by the equipment user or supplier and more stringent than Class 1						
1	≤ 20 000	≤ 400	≤ 10	-	≤ -70 °C	-	0,01
2	≤ 400 000	≤ 6 000	≤ 100	-	≤ -40 °C	-	0,1
3	-	≤ 90 000	≤ 1 000	-	≤ -20 °C	-	1
4	-	-	≤ 10 000	-	≤ +3 °C	-	5
5	-	-	≤ 100 000	-	≤ +7 °C	-	-
6	-	-	-	≤ 5	≤ +10 °C	-	-
7	-	-	-	5 - 10	-	≤ 0,5	-
8	-	-	-	-	-	0,5 - 5	-
9	-	-	-	-	-	5 - 10	-
X	-	-	-	> 10	-	> 10	> 10

Specifying air purity in accordance with ISO8573-

When specifying the purity of air required, the standard must always be referenced, followed by the purity class selected for each contaminant (a different purity class can be selected for each contamination if required).

An example of how to write an air quality specification is shown below:

ISO 8573-1:2010 Class 1.2.1

ISO 8573-1:2010 refers to the standard document and its revision, the three digits refer to the purity classifications selected for solid particulate, water and total oil. Selecting an air purity class of 1.2.1 would specify the following air quality when operating at the standard's reference conditions:

Class 1 - Particulate

In each cubic metre of compressed air, the particulate count should not exceed 20,000 particles in the 0.1 - 0.5 micron size range, 400 particles in the 0.5 - 1 micron size range and 10 particles in the 1 - 5 micron size range.

Class 2 - Water

A pressure dewpoint (PDP) of -40 $^{\circ}\text{C}~$ or better is required and no liquid water is allowed.

Class 1 - Oil

In each cubic metre of compressed air, not more than 0.01mg of oil is allowed. This is a total level for liquid oil, oil aerosol and oil vapour.

ISO8573-1:2010 Class zero

- Class 0 does not mean zero contamination.
- Class 0 requires the user and the equipment manufacturer to agree contamination levels as part of a written specification.
- The agreed contamination levels for a Class 0 specification should be within the measurement capabilities of the test equipment and test methods shown in ISO8573 Pt 2 to Pt 9.
- The agreed Class 0 specification must be written on all documentation to be in accordance with the standard.
- Stating Class 0 without the agreed specification is meaningless and not in accordance with the standard.
- A number of compressor manufacturers claim that the delivered air from their oil-free compressors is in compliance with Class 0.
- If the compressor was tested in clean room conditions, the contamination detected at the outlet will be minimal. Should the same compressor now be installed in typical urban environment, the level of contamination will be dependent upon what is drawn into the compressor intake, rendering the Class 0 claim invalid.
- A compressor delivering air to Class 0 will still require purification equipment in both the compressor room and at the point of use for the Class 0 purity to be maintained at the application.
- Air for critical applications such as breathing, medical, food, etc typically only requires air quality to Class 2.2.1 or Class 2.1.1.
- Purification of air to meet a Class 0 specification is only cost effective if carried out at the point of use.

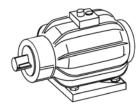
New Technology

The P3X Lite air preparation system is constructed from ultra light weight technopolymers instead of the traditional aluminium or zinc die cast, this means that is up to 45% lighter than conventional units.

This non-metal construction also means that the P3X Lite is corrosion free enabling it to be used in harsh industrial environments where anti freeze or aggressive synthetic oils are present.


The use of technopolymers in the design of P3X Lite has facilitated a universal body design, this has resulted in reducing the number of variants required to cover the full spectrum of applications. This can dramatically lower logistic costs and simplify stock holding for customers making the P3X Lite a very cost effective solution.

New Nano Mist Technology, New Lubricator Concept. Self-Adjusting.


With conventional lubricators, only the oil volume per time unit can be adjusted. If the demand changes, the quantity dispensed still remains constant.

The P3X Lite lubricator concept sets new benchmarks here. For the first time, the oil volume is automatically adjusted to the flow rate. This ensures that there is neither too little nor too much oil in the system, which leads to clear economic and ecological advantages. In addition, with conventional systems, the distance between the lubricator and the equipment has to be less than 8 meters. With larger distances, the dispensed oil is deposited as a wall flow. The new lubricator principle of the P3X Lite allows for distances of up to 40 meters. This opens up new scope for the design of even more efficient production systems.

P1V-M - Robust Air Motors

Air motors have much smaller installation dimensions than corresponding electric motors.

Air motors can be loaded until they stall, without damage. They are designed to be able to withstand the toughest heat, vibration, impact etc.

Air motors can be stopped and started continually without damage.



The simple design principle of air motors makes them very easy to service.

The weight of an air motor is several times less than corresponding electric motors.

Air motors can be used in the harshest environments.

The motors are reversible as standard.

The reliability of air motors is very high, thanks to the design and the low number of moving parts.

Robust Air Motors

P1V-M is a series of air motors, with planetary gearbox and motor made of grey casted iron. Its robustness makes it suitable for all normal air motor applications.

The range contains three different sizes with power ratings of 200, 400, 600, 900 and 1200 Watts, $\,$

The motor and gearbox are built to be extremely strong, making the motors suitable for applications requiring considerable robustness. The gearbox is of the planetary type, permanently lubricated with grease. The flange mounting is cast as an integral part of the case, and give, together with the foot bracket, plenty of opportunity for simple and robust installation.

A new design principle has made service activities quicker and easier than for any comparable motor. Servicing involves loosening the screws holding the rear piece to the motor, removing the worn vanes from the back and inserting the new vanes.

Unlike traditional air motors, there is no need to fully open the P1V-M for servicing, making the process much easier.

Technical data

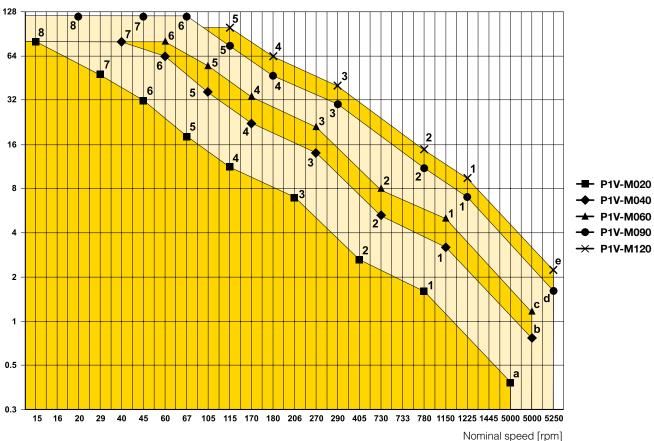
Note: All technical data are based on a working pressure of 6 bar and with oil.

For oil-free performances are -10 to 15% lower than data in charts.

Speed tolerance accuracy in between clock and anti-clockwise directions is $\pm 10\%$.

Air motor size & type	P1V-M020	P1V-M040	P1V-M060	P1V-M090	P1V-M120					
Nominal power (watts)	200	400	600	900	1200					
Working pressure (bar)	3 to 7, 6 in explosive atmosphere									
Working temperature (°C)	-20 to +110									
Ambient temperature (°C)		-20 to +	-40 in explosive atm	osphere						
Air flow required (NI/min)	300	600	900	2200	2600					
Min pipe ID, inlet (mm)	10	12	13	13	13					
Min pipe ID, outlet (mm)	10	12	13	13	13					
Choice of treatment unit: recommended min air flow (I/min) at p1 7.5 bar and 0.8 bar pressure drop										
	330	660	990	2500	2900					
Choice of valve:	ecommended mir	n nominal air flow	(I/min) at p1 6 bar	and 1 bar pressure	e drop					
	360	720	1080	2800	3200					
Medium		40µm filtered, oil m	nist or dry unlubricat	ed compressed air						
Oil free operation, indoor		ISO	3573-1 purity class	3.4.1						
Oil free operation, outdoor		ISO8	3573-1 purity class	1.2.1						
Oil operation		1-2 drop(s) per cu	be meter, ISO8573-	1 purity class 35						
Recommended oil	Foodstuffs industry Klüber oil 4 UH1- 32 N									
Sound level free outlet (dB(A))	107	107	107	120	120					
With outlet silencer (dB(A))	97	98	99	81	81					

Note: Sound levels are measured at free speed with the measuring instrument positioned 1 meter away from the air motor at an height of 1 meter.


Material specification

Air motor size & type	P1V-M020	P1V-M040	P1V-M060	P1V-M090	P1V-M120					
	Without gear box									
Motor housing		Cast iron, synthetic paint, grey color								
Shaft			Hardened steel							
Key		Hardened steel								
External seal			NBR							
Internal steel parts		High grade steel								
Motor lubrication			Bearings: grease							
Vanes			Patented, no data							
			With gear box							
Planetary gearbox		Steel / ca	st iron, synthetic paint	, grey color						
Shaft			Hardened steel							
Key			Hardened steel							
External seal			NBR							
Internal steel parts			High grade steel							
Gearbox lubrication		Gr	ease, Shell Cassida R	LS2						

Choice of an air motor

The motor to be used should be selected by starting with the torque needed at a specific shaft speed. In other words, to choose the right motor, you have to know the required speed and torque. Since maximum power is reached at half the motor's free speed, the motor should be chosen so that the operating point is as close as possible to the maximum power of the motor.

The design principle of the motor means that higher torque is generated when it is braked, which tends to increase the speed, etc. This means that the motor has a kind of speed self-regulation function built in.

Use the above graph to choose the correct motor size. The graph contains the points for the maximum torque of each motor at maximum output. Add your operating point to the graph, then select a marked point above and to the right of your point.

Then use the correct working diagram of the chosen motor to get more detailed technical data. Always select a motor whose requisite technical data are in the shaded area. Also use the correction diagram to find out what operation with different supply pressures would mean for the motor.

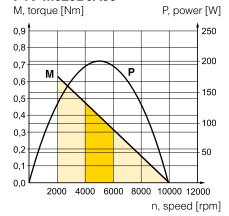
Tip: Select a motor which is slightly too fast and powerful, then regulate its speed and torque with a pressure regulator and/or throttle to achieve the optimum working point.

Air motors in diagram above

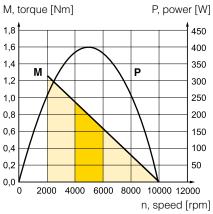
■ a	P1V-M020B0A00	A 1	P1V-M060C0230
♦ b	P1V-M040B0A00	A 2	P1V-M060C0146
▲ c	P1V-M060B0A00	A 3	P1V-M060C0054
d	P1V-M090B0A00	A 4	P1V-M060C0034
X e	P1V-M120B0A00	A 5	P1V-M060C0021
		A 6	P1V-M060C0012
1	P1V-M020C0230		
2	P1V-M020C0146	1	P1V-M090C0245
3	P1V-M020C0054	● 2	P1V-M090C0156
4	P1V-M020C0034	● 3	P1V-M090C0058
5	P1V-M020C0021	• 4	P1V-M090C0036
6	P1V-M020C0012	● 5	P1V-M090C0023
7	P1V-M020C0008	● 6	P1V-M090C0013
8	P1V-M020C0003	• 7	P1V-M090C0009
		● 8	P1V-M090C0004
1	P1V-M040C0230		
♦ 2	P1V-M040C0146	X 1	P1V-M120C0245
♦ 3	P1V-M040C0054	X 2	P1V-M120C0156
4	P1V-M040C0034	X 3	P1V-M120C0058
♦ 5	P1V-M040C0021	X 4	P1V-M120C0036
• 6	P1V-M040C0012	X 5	P1V-M120C0023
♦ 7	P1V-M040C0008		

P1V-M - Robust Air Motors

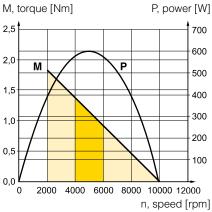
NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Speed tolerance accuracy -+10%

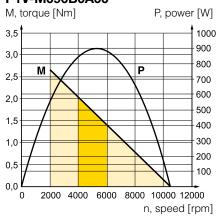


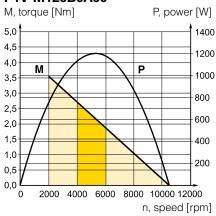
Robust motor reversible with keyed shaft, flange


Max power	Free speed*	Nominal speed	Nominal torque	Min start	Air consumption at	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	torque Nm	max power l/s		mm	Kg	
0,200	10 000	5 000	0,38	0,57	5	G1/8	10	1,00	P1V-M020B0A00
0,400	10 000	5 000	0,76	1,10	10	G3/8	12	1,40	P1V-M040B0A00
0,600	10 000	5 000	1,10	1,70	15	G3/8	13	1,60	P1V-M060B0A00
0,900	10 500	5 250	1,60	2,40	36,7	G1/2	13	3,10	P1V-M090B0A00
1,200	10 500	5 250	2,20	3,30	43,3	G1/2	13	3,80	P1V-M120B0A00

^{*} maximum admissible speed (idling)


P1V-M020B0A00


P1V-M040B0A00

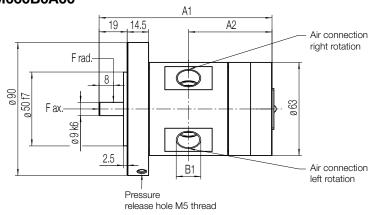

P1V-M060B0A00

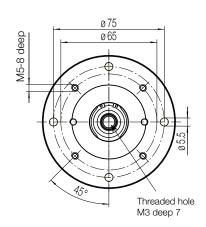
P1V-M090B0A00

P1V-M120B0A00

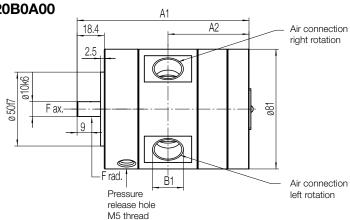
Possible working range of motor.

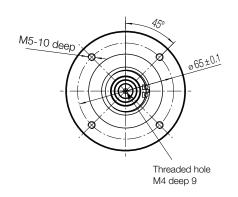
Optimum working range of motor.

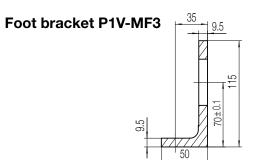

Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear

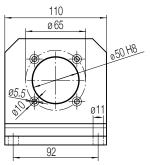


P1V-M - Robust Air Motors


Dimensions (mm)


Motor P1V-M020B0A00 Motor P1V-M040B0A00 Motor P1V-M060B0A00

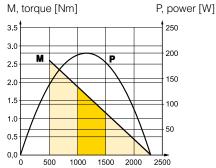




Motor P1V-M090B0A00 Motor P1V-M120B0A00

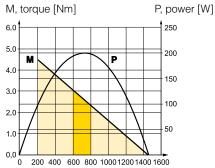
Motor type		Dimensions (mm)		
	A1	A2	B1	Key on shaft
P1V-M020B0A00	82	39	G1/8	DIN6885 A3x3x10
P1V-M040B0A00	102	49	G3/8	DIN6885 A3x3x10
P1V-M060B0A00	117	56.5	G3/8	DIN6885 A3x3x10
P1V-M090B0A00	116.3	54.8	G1/2	DIN6885 A3x3x18
P1V-M120B0A00	136.3	64.3	G1/2	DIN6885 A3x3x18

NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Speed tolerance accuracy -+10%

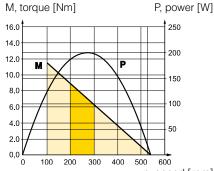


Robust reversible motor with keyed shaft, flange

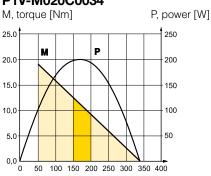
Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air consumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,200	2 300	1 150	1,60	2,40	5	G1/8	10	2,40	P1V-M020C0230
0,200	1 460	730	2,60	3,90	5	G1/8	10	2,40	P1V-M020C0146
0,200	540	270	7,00	10,50	5	G1/8	10	2,80	P1V-M020C0054
0,200	340	170	11,20	16,80	5	G1/8	10	2,80	P1V-M020C0034
0,200	210	105	18,20	27,30	5	G1/8	10	2,80	P1V-M020C0021
0,200	120	60	31,80	47,70	5	G1/8	10	3,20	P1V-M020C0012
0,200	80	40	47,80	71,70	5	G1/8	10	3,20	P1V-M020C0008
0,200	32	16	80**	80**	5	G1/8	10	3,20	P1V-M020C0003


^{*} maximum admissible speed (idling) / ** gear box restriction

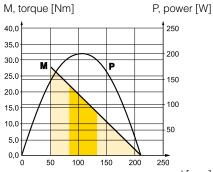
P1V-M020C0230


n, speed [rpm]

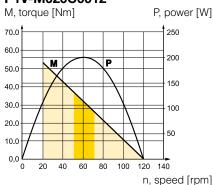
P1V-M020C0146


n, speed [rpm]

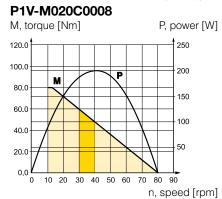
P1V-M020C0054


n, speed [rpm]

P1V-M020C0034


n, speed [rpm]

P1V-M020C0021



n, speed [rpm]

P1V-M020C0012

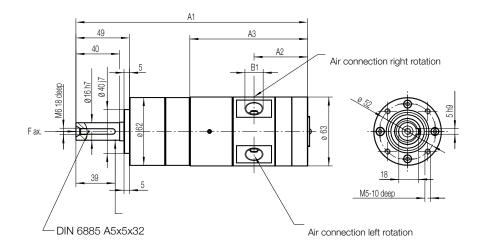
P1V-M020C0003

M, torque [Nm] P, power [W] 300.0 250 250.0 200 200.0 150 150.0 100 100.0 50 50.0 0,0 10 15 20 25

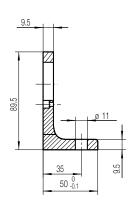
n, speed [rpm]

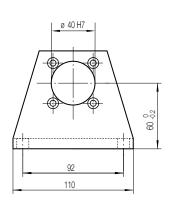
Possible

Possible working range of motor.

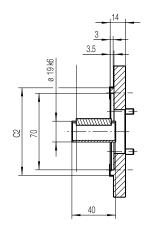

Optimum working range of motor.

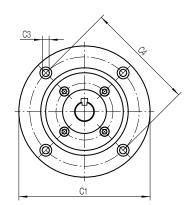
Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear




Dimensions (mm)

Motor P1V-M020C




Foot bracket P1V-MF4

Flanges P1V-MF8, P1V-MF9



Motor size		Dimensions (mm)					
IVIOLOI SIZE				A1	A2	A3	B1
	P1V-M020C0230	P1V-M020C0034		192.5	39	88	G1/8
200 watts	P1V-M020C0146	P1V-M020C0021	P1V-M020C0008	208.5	39	88	G1/8
	P1V-M020C0054	P1V-M020C0012	P1V-M020C0003	224	39	88	G1/8

Motor type			Dimensio	ons (mm)	
		C1	C2	C3	C4
P1V-M020C	(IEC80 B5) P1V-MF9	200	130f7	11	165
	(IEC80 B14) P1V-MF8	120	80f7	M6	100

NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Speed tolerance accuracy -+10%

Robust reversible motor with keyed shaft, flange

Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air consumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,400	2 300	1 150	3,20	4,80	10	G3/8	12	2,80	P1V-M040C0230
0,400	1 460	730	5,20	7,80	10	G3/8	12	2,80	P1V-M040C0146
0,400	540	270	14,00	21,00	10	G3/8	12	3,20	P1V-M040C0054
0,400	340	170	22,40	33,60	10	G3/8	12	3,20	P1V-M040C0034
0,400	210	105	36,40	54,60	10	G3/8	12	3,20	P1V-M040C0021
0,400	120	60	63,60	80**	10	G3/8	12	3,60	P1V-M040C0012
0,400	80	40	80**	80**	10	G3/8	12	3,60	P1V-M040C0008

^{*} maximum admissible speed (idling) / ** gear box restriction

P1V-M040C0230

P1V-M040C0034

M, torque [Nm]

50.0

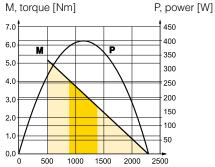
45.0

40.0

35.0

30.0

25.0


20.0

15.0

10.0

5.0

0.0

n, speed [rpm]

P, power [W]

450

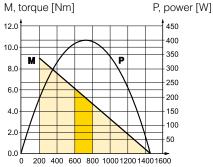
400

350

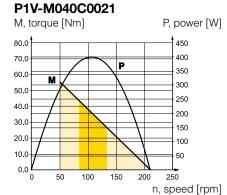
300

250

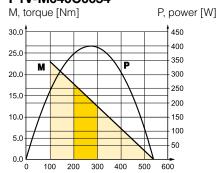
200


150

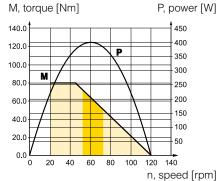
100


-50

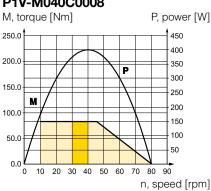
n, speed [rpm]


P1V-M040C0146

n, speed [rpm]



P1V-M040C0054



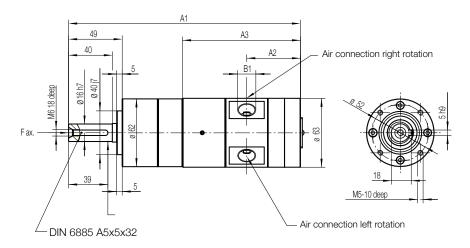
n, speed [rpm]

P1V-M040C0012

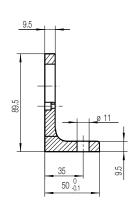
P1V-M040C0008

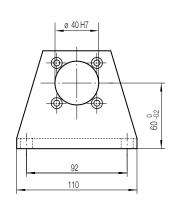
50 100 150 200 250 300 350 400

Possible working range of motor.

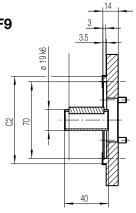

Optimum working range of motor.

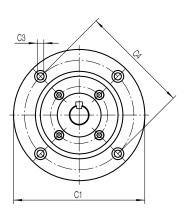
Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear




Dimensions (mm)

Motor P1V-M040C



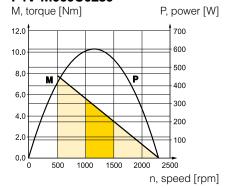

Foot bracket P1V-MF4

Flanges P1V-MF8, P1V-MF9

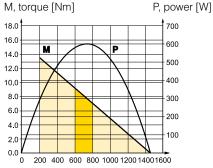
Motor size					Dimensio	ons (mm)	
Motor Size				A1	A2	A3	B1
	P1V-M040C0230	P1V-M040C0034		212.5	49	108	G3/8
400 watts	P1V-M040C0146	P1V-M040C0021	P1V-M040C0008	228.5	49	108	G3/8
	P1V-M040C0054	P1V-M040C0012		244	49	108	G3/8

Motor type		Dimensions (mm)				
Motor type		C1	C2	C3	C4	
P1V-M040C	(IEC80 B5) P1V-MF9	200	130f7	11	165	
F 1 V-101040C	(IEC80 B14) P1V-MF8	120	80f7	M6	100	

NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Speed tolerance accuracy -+10%

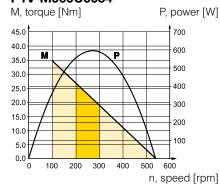


Robust reversible motor with keyed shaft, flange

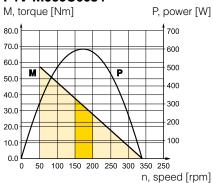

Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air consumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,600	2 300	1 150	5,00	7,50	15	G3/8	13	3,00	P1V-M060C0230
0,600	1 460	730	7,80	11,70	15	G3/8	13	3,00	P1V-M060C0146
0,600	540	270	21,00	31,50	15	G3/8	13	3,40	P1V-M060C0054
0,600	340	170	33,60	50,40	15	G3/8	13	3,40	P1V-M060C0034
0,600	210	105	54,50	80**	15	G3/8	13	3,40	P1V-M060C0021
0,600	120	60	80**	80**	15	G3/8	13	3,80	P1V-M060C0012

^{*} maximum admissible speed (idling) / ** gear box restriction

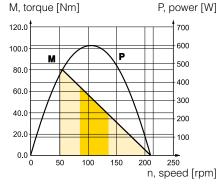
P1V-M060C0230

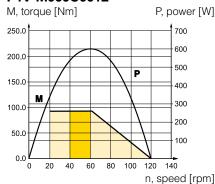


P1V-M060C0146



n, speed [rpm]

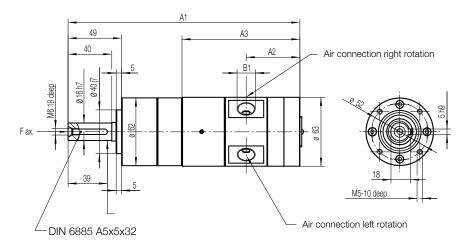

P1V-M060C0054


P1V-M060C0034

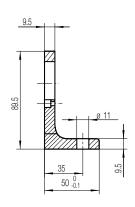
P1V-M060C0021

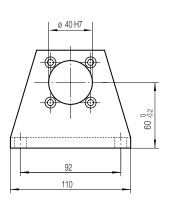
P1V-M060C0012

Possible working range of motor.

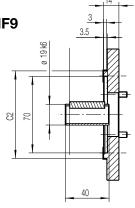

Optimum working range of motor.

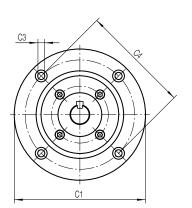
Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear




Dimensions (mm)

Motor P1V-M060C



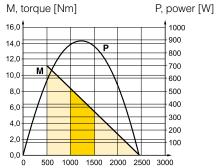

Foot bracket P1V-MF4

Flanges P1V-MF8, P1V-MF9

Motor size					Dimensio	ons (mm)	
IVIOLOI SIZE				A1	A2	A3	B1
	P1V-M060C0230	P1V-M060C0034		227.5	56.5	123	G3/8
600 watts	P1V-M060C0146	P1V-M060C0021	P1V-M060C0012	243.5	56.5	123	G3/8
	P1V-M060C0054			259	56.5	123	G3/8

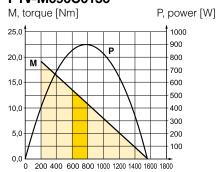
Motor typo		Dimensions (mm)				
Motor type		C1	C2	C3	C4	
D4)/ M0600	(IEC80 B5) P1V-MF9	200	130f7	11	165	
P1V-M060C	(IEC80 B14) P1V-MF8	120	80f7	M6	100	

NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Speed tolerance accuracy -+10%

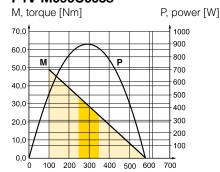


Robust motor reversible with keyed shaft, flange

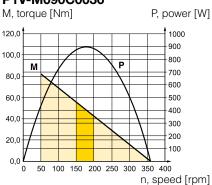
Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air consumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,900	2 450	1 225	7,00	10,50	36,7	G1/2	13	4,90	P1V-M090C0245
0,900	1 560	780	11,00	16,50	36,7	G1/2	13	4,90	P1V-M090C0156
0,900	580	290	30,00	45,00	36,7	G1/2	13	5,60	P1V-M090C0058
0,900	360	180	47,00	71,00	36,7	G1/2	13	5,60	P1V-M090C0036
0,900	230	115	75,00	112,00	36,7	G1/2	13	5,60	P1V-M090C0023
0,900	134	67	120**	120**	36,7	G1/2	13	6,30	P1V-M090C0013
0,900	90	45	120**	120**	36,7	G1/2	13	6,30	P1V-M090C0009
0,900	40	20	120**	120**	36,7	G1/2	13	6,30	P1V-M090C0004


^{*} maximum admissible speed (idling) / ** gear box restriction

P1V-M090C0245

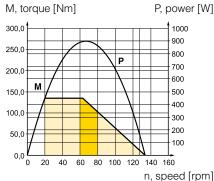

n, speed [rpm]

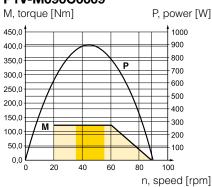
P1V-M090C0156

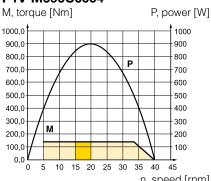

n, speed [rpm]

P1V-M090C0058

n, speed [rpm]


P1V-M090C0036


P1V-M090C0023

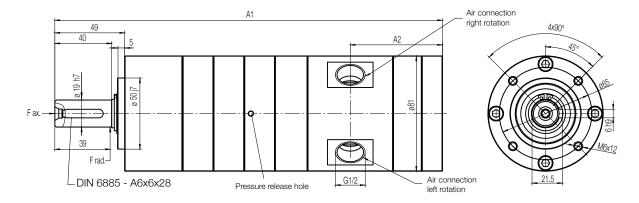

P1V-M090C0013

P1V-M090C0009

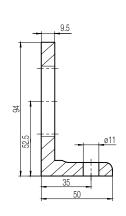
P1V-M090C0004

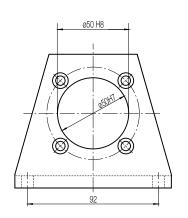
n, speed [rpm]

Possible working range of motor.

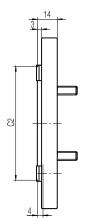

Optimum working range of motor.

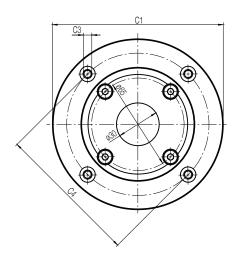
Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear




Dimensions (mm)

Motor P1V-M090C



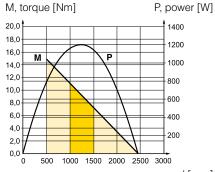

Foot bracket P1V-MF5

Flanges P1V-MF6, P1V-MF7

Motor size				Dimensions (mm)		
IVIOLOI SIZE				A1	A2	
	P1V-M090C0245	P1V-M090C0156		209	55	
900 watts	P1V-M090C0058	P1V-M090C0036	P1V-M090C0023	231	55	
	P1V-M090C0013	P1V-M090C0009	P1V-M090C0004	252.5	55	

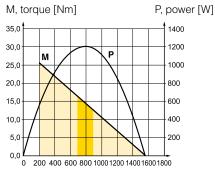
Motor type		Dimensions (mm)				
Motor type		C1	C2	C3	C4	
P1V-M090C	(IEC80 B5) P1V-MF7		130f7	11	165	
F1V-101090C	(IEC80 B14) P1V-MF6	120	80f7	M6	100	

NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Speed tolerance accuracy -+10%

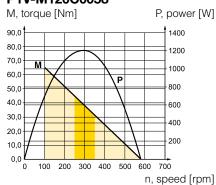


Robust motor reversible with keyed shaft, flange

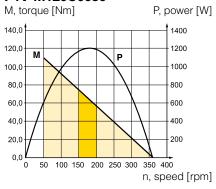
Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air consumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
1,20	2 450	1 225	9,40	14,00	43,3	G1/2	13	5,60	P1V-M120C0245
1,20	1 560	780	14,70	22,00	43,3	G1/2	13	5,60	P1V-M120C0156
1,20	580	290	40,00	60,00	43,3	G1/2	13	6,30	P1V-M120C0058
1,20	360	180	63,00	94,00	43,3	G1/2	13	6,30	P1V-M120C0036
1,20	230	115	100,00	120**	43,3	G1/2	13	6,30	P1V-M120C0023


^{*} maximum admissible speed (idling) / ** gear box restriction

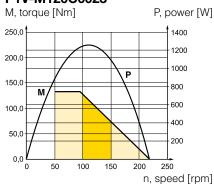
P1V-M120C0245



P1V-M120C0156



n, speed [rpm]

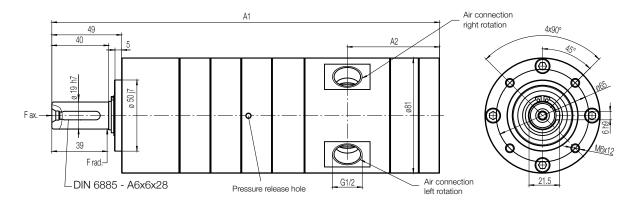

P1V-M120C0058

P1V-M120C0036

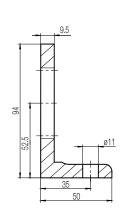
P1V-M120C0023

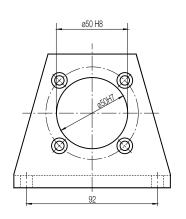
Possible working range of motor.

Optimum working range of motor.

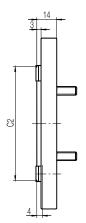

Higher speeds = more vane wear

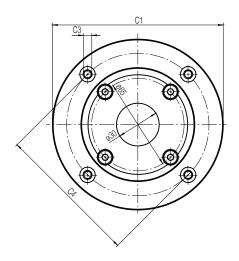
Lower speeds with high torque = more gearbox wear




Dimensions (mm)

Motor P1V-M120C




Foot bracket P1V-MF5

Flanges P1V-MF6, P1V-MF7

Motor size			Dimensions (mm)		
iviolor size				A1	A2
1000	P1V-M120C0245	P1V-M120C0156		229	65
1200 watts	P1V-M120C0058	P1V-M120C0036	P1V-M120C0023	251	65

Motor type		Dimensions (mm)				
Motor type		C1	C2	СЗ	C4	
P1V-M120C	(IEC80 B5) P1V-MF7	200	130f7	11	165	
PTV-IVITZUC	(IEC80 B14) P1V-MF6	120	80f7	M6	100	

Permissible forces air motors with gear boxes

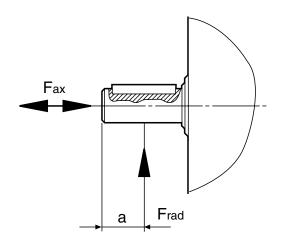
Max. permitted load on output shaft for basic motors (based on 10,000 rpm at input shaft with 90~% probable service life for ball bearings).

a (mm)	Radial force (N)	Axial force (N)							
Motors P1V-M020C0230, P1V-M020C0146									
39	240	50							
Motors P1V-M020C0054, P1V-M020C0034, P1V-M020C0021									
39	360	70							
Motors P1V-M020C0012, P1V-M020C0008,P1V-M020C0003									
39	520	120							

Motors P1V-M040C0230, P1V-M040C0146						
39	240	50				
Motors P1V-M040C0054, P1V-M040C0034, P1V-M040C0021						
39	360	70				
Motors P1V-M040C0012, P1V-M040C0008						
39	520	120				

Motors P1V-M060C0230, P1V-M060C0146							
39	50						
Motors P1V-M060C0054, P1V-M060C0034, P1V-M060C0021							
39	360	70					
Motors P1V-M060C0012							
39 520 120							

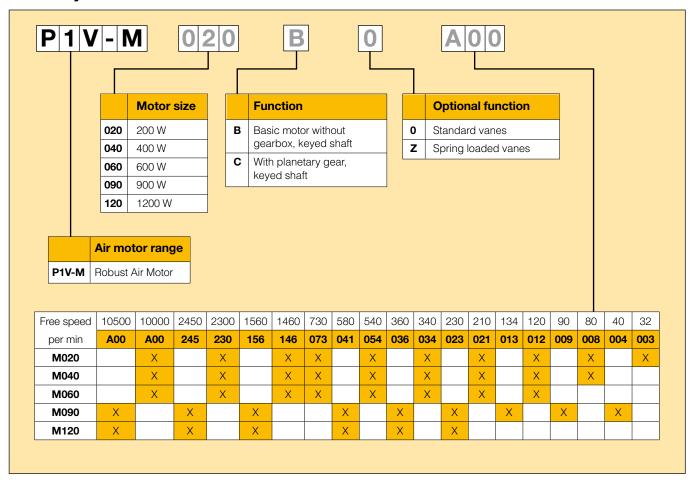
Motors P1V-M090C0245, P1V-M090C0156						
39	400	80				
Motors P1V-M090C0058, P1V-M090C0036, P1V-M090C0023						
39	600	120				
Motors P1V-M090C0013, P1V-M090C0009, P1V-M090C0004						
39	1000	200				


Motors P1V-M120C0245, P1V-M120C0156							
39 400 80							
Motors P1V-M120C0058, P1V-M120C0036, P1V-M120C0023							
39	600	120					

Permissible forces air motors without gear boxes

	a (mm)	Radial force (N)	Axial force (N)
P1V-M020B	8	145	0
P1V-M040B	8	145	0
P1V-M060B	8	145	0
P1V-M090B	9	145	0
P1V-M120B	9	145	0

Frad = Radial loading (N)


Fax = Axial loading (N)

Loads on output shaft for basic motor with shaft with key slot.

Order key

Note: This model code can not be used for creating new part numbers. All possible combinations between motor size, function and free speed are in all previous pages except for optional function.

Service - Easier - Faster - Cheaper

Replacing vanes - step by step.

Step 1. Remove the rear piece.

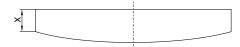
Step 3.Use a screwdriver to rotate the motor until you can see a vane in the centre of the inspection hole.

Step 4.Remove the old vane and replace it with a new one.

Repeat steps 3 and 4 until all the vanes have been replaced.

Step 5. Replace the inspection plug.

Step 6. Replace the rear piece.



Replacing vanes with motor still fitted to the machine

The P1V-M motor has been developed to allow the vanes to be replaced without the need to remove the motor from the machine. This makes vane replacement easier, quicker and cheaper, while minimising stoppages.

Lubrication and service life

The first service is due after approximately 500 hours of operation. After the first service, the service interval is determined by the degree of vane wear*. The table below shows new dimensions and the minimum dimensions of worn vanes.

Air motors	Dimensions on new vanes X [mm]	Minimum dimensions on vane X [mm]
P1V-M020	8,5	6,5
P1V-M040	7,0	5,0
P1V-M060	8,0	6,0
P1V-M090	Χ	Χ
P1V-M120	X	X

Spare parts

For motor with Z optional function, please consult factory

	Spare parts Order Code				
Motor	Air Motor (1) Gear Box (2)				
P1V-M020C0230	P1V-M/202193A	P1V-M/202202B			
P1V-M020C0146	P1V-M/202193A	P1V-M/202202D			
P1V-M020C0054	P1V-M/202193A	P1V-M/202202G			
P1V-M020C0034	P1V-M/202193B	P1V-M/202202C			
P1V-M020C0021	P1V-M/202193B	P1V-M/202202E			
P1V-M020C0012	P1V-M/202193B	P1V-M/202202F			
P1V-M020C0008	P1V-M/202193B	P1V-M/202202H			
P1V-M020C0003	P1V-M/202193B	P1V-M/202202I			
Motor	Air Motor (1)	Gear Box (2)			
P1V-M040C0230	P1V-M/202194A	P1V-M/202202B			
P1V-M040C0146	P1V-M/202194A	P1V-M/202202D			
P1V-M040C0054	P1V-M/202194A	P1V-M/202202G			
P1V-M040C0034	P1V-M/202194B	P1V-M/202202C			
P1V-M040C0021	P1V-M/202194B	P1V-M/202202E			
P1V-M040C0012	P1V-M/202194B	P1V-M/202202F			
P1V-M040C0008	P1V-M/202194B	P1V-M/202202H			
Motor	Air Motor (1)	Gear Box (2)			
P1V-M060C0230	P1V-M/202179A	P1V-M/202202B			
P1V-M060C0146	P1V-M/202179A	P1V-M/202202D			
P1V-M060C0054	P1V-M/202179A	P1V-M/202202G			
P1V-M060C0034	P1V-M/202179B	P1V-M/202202C			
P1V-M060C0021	P1V-M/202179B P1V-M/202202E				
P1V-M060C0012	P1V-M/202179B P1V-M/202202F				
Motor	Air Motor (1)	Gear Box (2)			
P1V-M090C0245	P1V-M/202409A	P1V-M/807015B			
P1V-M090C0156	P1V-M/202409B	P1V-M/807015C			
P1V-M090C0058	P1V-M/202409A	P1V-M/807015D			
P1V-M090C0036	P1V-M/202409B	P1V-M/807015E			
P1V-M090C0023	P1V-M/202409B	P1V-M/807015F			
P1V-M090C0013	P1V-M/202409A	P1V-M/807015G			
P1V-M090C0009	P1V-M/202409B	P1V-M/807015H			
P1V-M090C0004	P1V-M/202409B	P1V-M/807015I			
Motor	Air Motor (1)	Gear Box (2)			
P1V-M120C0245	P1V-M/202457A	P1V-M/807015B			
P1V-M120C0156	P1V-M/202457B	P1V-M/807015C			
P1V-M120C0058	P1V-M/202457A	P1V-M/807015D			
P1V-M120C0036	P1V-M/202457B	P1V-M/807015E			
P1V-M120C0023	P1V-M/202457B	P1V-M/807015F			

Service kits

The following kits are available for the basic motors, consisting of vanes.

Service kits, vanes for intermittent lubrication operation, option "0"

For motors	Order code
P1V-M020	P1V-6/831297A
P1V-M040	P1V-6/831298A
P1V-M060	P1V-6/831299A
P1V-M090	P1V-6/831300A
P1V-M120	P1V-6/831301A

The following kits are available for the basic motors, consisting of vanes and springs.

Service kits, vanes for intermittent lubrication operation, option "Z"

For motors	Order code
P1V-M020	Consult Factory
P1V-M040	Consult Factory
P1V-M060	Consult Factory
P1V-M090	Consult Factory
P1V-M120	Consult Factory

* The following normal service intervals should be applied to in order to guarantee problem-free operation in air motors working at load speeds. The specified hours of operation apply when the motor is running at the speed corresponding to maximum power (load speed). This is approximately half free speed. If the motor operates at higher speeds, the service interval is shorter. If the motor operates at lower speeds, the service interval is longer.

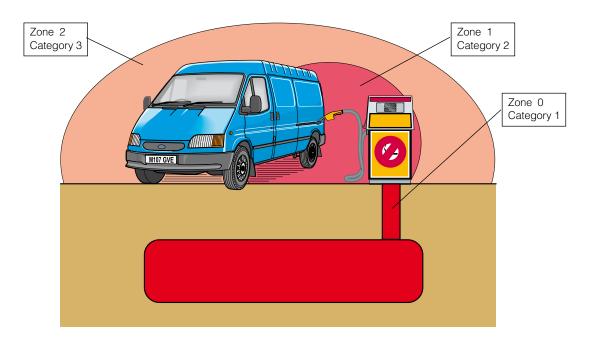
Introduction to the ATEX directive Explosive atmospheres

Directive 94/9/EC defines an explosive atmosphere as a mixture of:

- a) flammable substances gases, vapours, mists or dusts
- b) with air
- c) under specific atmospheric conditions
- d) in which, after ignition has occurred, combustion spreads to the entire flammable mixture

(NB: with regard to dust, it may be that not all dust is combusted after ignition has occurred)

An atmosphere with the potential to become an explosive atmosphere during operating conditions and/or under the influence of the surroundings is defined as a **potentially explosive atmosphere**. Products covered by directive 94/9/EC are defined as intended for use in potentially explosive atmospheres.


Harmonised European ATEX standard

The European Union has adopted two harmonised directives in the field of health and safety. The directives are known as ATEX 100a and ATEX 137.

Directive ATEX 100a (94/9/EC) lays down minimum safety requirements for products intended for use in potentially explosive atmospheres in European Union member states. Directive ATEX 137 (99/92/EC) defines minimum requirements for health and safety at the workplace, for working conditions and for the handling of products and materials in potentially explosive atmospheres. This directive also divides the workplace into **zones** and defines criteria by which products are **categorised** within these zones.

The table below describes the **zones** in an installation where there is a potential for explosive atmospheres. The **owner** of the installation must analyse and assess the area in which the explosive gas/dust mixture may occur, and if necessary must divide it into **zones**. This process of zoning then allows the correct plant and equipment to be selected for use in the area.

The ATEX directive has been in force throughout the European Union

Zones		Presence of potentially explosive atmosphere	Type of risk
Gas G	Dust D		
0	20	Present continuously or for long periods	Permanent
1	21	Likely to occur in normal operation occasionally	Potential
2	22	Not likely to occur in normal operation but, if it does occur, will persist for a short period only	Minimal

since 1 July 2003, replacing the existing divergent national and European legislation relating to explosive atmospheres.

Please note that for the first time, the directive covers mechanical, hydraulic and pneumatic equipment and not just electrical equipment as before.

With regard to the Machinery directive 98/37/EC, note that a number

of external requirements in 94/9/EC refer to hazards arising from potentially explosive atmospheres, where the Machinery directive only contains general requirements relating to explosion safety (Annex I 1.5.7).

As a result, directive 94/9/EC (ATEX 100a) takes precedence over the Machinery directive with regard to explosion protection in potentially explosive atmospheres. The requirements in the Machinery directive are applicable to all other risks relating to machinery.

Levels of protection for the various equipment categories

The various equipment categories must be capable of operating in accordance with the manufacturer's operating specifications at defined levels of protection.

Level of protection	Group Group		Group Group		Type of protection	Operating specifications
Very high	M1		Two independent means of protection or safety, ensuring that the equipment remains functional even in the event of two faults occurring independently of each other	The equipment remains energised and and functional even with an explosive atmosphere present		
Very high		1	Two independent means of protection or safety, ensuring that the equipment remains functional even in the event of two faults occurring independently of each other	The equipment remains energised and functional in zones 0, 1, 2 (G) and/or zones 20, 21, 22 (D)		
High	M2		Protection suitable for normal operation and severe operating conditions	The equipment is de-energised in the event of an explosive atmosphere		
High		2	Protection suitable for normal operation and frequent faults, or equipment in which faults normally have to be taken into accour	The equipment remains energised and functitional in zones 1, 2 (G) and/or zones 21, 22 (D)		
Normal		3	Protection suitable for normal operation	The equipment remains energised and functional in zones 2 (G) and/or zones 22 (D)		

Definition of groups (EN 1127-1)

Group I Equipment intended for use in underground parts of mines as well as those parts of surface installations of such mines likely to be endangered by flammable vapours and/or flammable dusts.

Group II Equipment intended for use in other places exposed to explosive atmospheres.

Group	l mines, combustible vapours		II other potentially explosive atmospheres (gases, dust)					st)
Category	M1	M2	1		2		3	
Atmosphere*			G	D	G	D	G	D
Zone			0	20	1	21	2	22

G = gas and D = dust

Temperature classes

Classification of flammable gases and vapours on the basis of ignition temperature

Temperature class	Ignition temperature °C
T1	Over 450
T2	(300) – 450
T3	(200) – 300
T4	(135) – 200
T5	(100) – 135
T6	(85) - 100

Declaration of conformity

The product catalogues contain copies of the declaration of conformity demonstrating that the product meets the requirements of directive 94/9/FC

The declaration is only valid in conjunction with the instructions contained in the installation manual relating to the safe use of the product throughout its service life.

The instructions relating to the conditions in the surrounding area are particularly important, as the certificate is invalidated if the instructions are found not to have been adhered to during operation of the product. If there is any doubt as to the validity of the certificate of conformity, contact Parker Hannifin customer service.

Operation, installation and maintenance

The installation manual of the product contains instructions relating to the safe storage, handling, operation and servicing of the product. The manual is available in different languages, and can be downloaded from www.parker.com/euro_pneumatic.

This document must be made accessible in a suitable place near where the product is installed. It is used as a reference for all personnel authorised to work with the product throughout its service life.

We, the manufacturer, reserve the right to modify, extend or improve the installation manual in the interests of the users.

For more information about ATEX see EUs homepage: http://europa.eu.int/comm/enterprise/atex/

Additional safety instructions for installation in explosive atmospheres

Serious, even fatal, damage or injury may be caused by the hot moving parts of the air motors in the presence of explosive gas mixtures and concentrations of dust.

All installation, connection, commissioning, servicing and repair work on air motors must be carried out by qualified personnel taking account of the following

- · These instructions
- · Notices on the motor
- All other planning documents, commissioning instructions and connection diagrams associated with the application.
- Provisions and requirements specific to the application
- Applicable national/international regulations (explosion protection, safety and accident prevention)

Real life applications

Air motors are designed to provide rotary movement in industrial applications, and should only be used in accordance with the instructions in the technical specifications in the catalogue, and within the operating range indicated on the motor housing. The motors meet the applicable standards and requirements of the Machinery Directive 94/9/EC (ATEX)

The motors must not be used as brakes in explosive atmospheres.

Braking involves driving the motor against the direction of rotation for which the motor is supplied with compressed air. The motor is then operating as a compressor, and there is a corresponding increase in temperature.

The motors must **not** be used underground in mines susceptible to firedamp and/or combustible dust. The motors are intended for use in areas in which explosive atmospheres caused by gases, vapours or mists of combustible liquids, or air/dust mixtures may be expected to occur during normal use (infrequently)

Checklist

Before using the motors in a potentially explosive atmosphere, you should check the following:

Do the motor specifications match the classification of the area of use in accordance with Directive 94/9/EG (previously ATEX 100a)

- Equipment group
- Equipment category
- Zone
- Temperature class
- Max. surface temperature
- 1. When installing the motor, is it certain that there is no potentially explosive atmosphere, oil, acids, gases, vapours or radiation?
- 2. Is the ambient temperature as specified in the technical data in the catalogue at all times?
- 3. Is it certain that the air motor is adequately ventilated and that no additional heat is added (for example in the shaft connection)?
- 4. Are all the driven mechanical components ATEX certified?

Installation requirements in potentially explosive atmospheres

- The temperature of the supply air must not exceed the ambient temperature.
- The air motor may be installed in any position.
- An air treatment unit must be attached to the air inlet.
- In a potentially explosive atmosphere, none of the motor ports may be blocked because this may cause an increase in temperature.
 The air from the port must be taken to the silencer or, preferably, outside the potentially explosive area.
- The air motor must be connected to ground at all times, through its support, a metallic tube or separate conductor.
- The outlet of the air motor must not open within a potentially explosive area, but must be passed to the silencer or, preferably, removed and released outside the potentially explosive area.
- · The air motor may only drive units that are ATEX certified.
- Ensure that the motor is not exposed to forces greater than those permitted in accordance with the catalogue.

Measuring the temperature on the outside of the air motor (only when used in potentially explosive areas)

During the commissioning process, it is essential to measure temperature increases at the indicated positions on the outside of the air motor.

These measurements can be taken using standard thermometers.

Checking the motor during operation

The motor must be kept clean on the outside, and a layer of dirt thicker than 5 mm must never be allowed to form.

Strong solvents should not be used for cleaning, because they can cause the seal (material NBR/FPM) around the drive shaft to swell, potentially increasing the temperature.

P1V-M Declaration of Conformity

According to ATEX 94/9/EC

P1V-M Declaration of Incorporation

According to EC Machinery Directive 2006/42/EC

We Parker Hannifin Manufacturing Germany GmbH & Co. KG Pneumatic Division Europe Industriestrasse 8 70794 Filderstadt Germany

Declare that the following Air Motors have been assessed in accordance with ATEX 94/9/EC (Products for use in potentially explosive atmospheres). Air Motors here below from the P1V-M series are compatible for the use in explosive atmosphere **Ex II 2 GD c IIC T4 (130°C) X.**

P/Ns are without gear boxes: P1V-M020B*xxx, P1V-M040B*xxx, P1V-M060B*xxx, P1V-M090B*xxx, P1\'\n.\'\) B*xxx And P/Ns with gear boxes are: P1V-M020C*xxx, P1V-M040C*xxx, P1V-M060C*xxx, P1V-M090C*xxx, P1V-

P1V-M is designed for utilization in applications falling under the scope of the ATEX 94/5° EC. These products are designed and manufactured in compliance with following elements:

- EN 1127-1:2007 Explosive atmospheres Explosion prevention and proxitic \ Part 1: Basic concepts and methodology
- EN 13463-1:2009 Non electrical equipment for use in potentially and equipments Part 1: Basic method and requirements
- EN 13463-5 Non-electrical equipment intended for use in p 'en ally explosive atmospheres Part 5: Protection by constructional safety 'c'
- EN 983+A1:2008 Safety of machinery Safety rec. re. re. is for fluid power systems and their components Pneumatics

As manufacturer of the partly completed machine ve deciare that:

- The specified Air motors correspond to the listed essential requirements of the EC Machinery Directive 2006/42/EC
- The relevant technical docum, ntauon is complied in accordance with part B of Annex VII
- The relevant technical documentation in accordance with part B of Annex VII will be transmitted in response to a reasonable requestry transmitted in authorities

Product: Air motor 1V- 1 Jeries

Directives Date Applied and fulfilled essential

requirements

2006/42/7. 2006-06 1.1.2, 1.1.5, 1.3.4, 1.5.3, 1.7.3, 1.7.4

St....a Is Date Remark
DIN 1. ISO 12100 2011-03 Partly fulfilled

This partly completed machinery must not be put into service until the final machinery into which it is to be incorporates has been declared in conformity with the provisions of the Directive 2006/42/EG, were appropriated.

SGIGKER

Additional Information
This coverage could only be referred to as long as operations needed for final assembling and starting up of theses products comply with standards relating to the above mentioned directive. Each time this will be required for compliance purpose, the user will have to apply for a complete coverage of the final assembled system according to the above mentioned directive and relating standards

Filderstadt, Germany June 2014

Ing. Franck Roussillon
European Product Manager
Actuators Business Unit, Pneumatic Division Europe

P1V-M ATEX CE Edition 01

Parker Worldwide

Europe, Middle East, Africa

AE – United Arab Emirates,

Dubai

Tel: +971 4 8127100 parker.me@parker.com

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt

Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ - Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BY - Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CH - Switzerland, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ - Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE – Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI - Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR - France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com

HU - Hungary, Budapest Tel: +36 23 885 475 parker.hungary@parker.com IE - Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT - Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ - Kazakhstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

NL - The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO - Norway, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL - Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT - Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE - Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK - Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL - Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR – Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA - Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK - United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

ZA – South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

North America

CA – Canada, Milton, Ontario Tel: +1 905 693 3000

US - USA, Cleveland Tel: +1 216 896 3000

Asia Pacific

AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777

CN - China, Shanghai Tel: +86 21 2899 5000

HK - Hong Kong Tel: +852 2428 8008

IN - India, Mumbai Tel: +91 22 6513 7081-85

JP – Japan, Tokyo Tel: +81 (0)3 6408 3901

KR - South Korea, Seoul Tel: +82 2 559 0400

MY – Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ – New Zealand, Mt Wellington Tel: +64 9 574 1744

SG - Singapore Tel: +65 6887 6300

TH - Thailand, Bangkok Tel: +662 186 7000

TW – Taiwan, Taipei Tel: +886 2 2298 8987

South America

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

BR - Brazil, Sao Jose dos Campos Tel: +55 800 727 5374

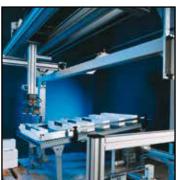
CL - Chile, Santiago Tel: +56 2 623 1216

MX – Mexico, Apodaca Tel: +52 81 8156 6000

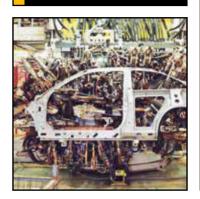
European Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

© 2014 Parker Hannifin Corporation. All rights reserved.

Catalogue PDE2539TCUK-Deprag - V2 - November 2014



Parker Hannifin Ltd.


Tachbrook Park Drive Tachbrook Park, Warwick, CV34 6TU United Kingdom

Tel.: +44 (0) 1926 317 878 Fax: +44 (0) 1926 317 855 parker.uk@parker.com www.parker.com

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Air Motors

P1V-P Radial Piston Type 0.066 to 0.228 kW

Catalogue PDE2538TCUK November 2014

Features	Air motor	Hydraulic motor	Electric motor	Electric motor regulated	Electric motor regulated with feed back
Overload safe	***	***	*	**	***
Increased torque at higher loads	***	**	*	**	***
Easy to limit torque	***	***	*	*	***
Easy to vary speed	***	***	*	***	***
Easy to limit power	***	***	*	**	***
Reliability	***	***	***	***	***
Robustness	***	***	*	*	*
Installation cost	***	*	**	**	**
Ease of service	***	**	*	*	*
Safety in damp environments	***	***	*	*	*
Safety in explosive atmospheres	***	***	*	*	*
Safety risk with electrical installations	***	***	*	*	*
Risk of oil leak	***	*	***	***	***
Hydraulic system required	***	*	***	***	***
Weight	**	***	*	**	*
Power density	**	***	*	*	*
High torque for size	**	***	*	*	*
Noise level during operation	*	***	**	**	**
Total energy consumption	*	**	***	***	***
Service interval	*	**	***	***	***
Compressor capacity required	*	***	***	***	***
Purchase price	*	*	***	***	**
Accuracy, speed	*	**	*	**	***
Regulating dynamic	*	*	*	*	***
Communication	*	*	*	***	***

^{* =} good, **=average, ***=excellent

Important

Before carrying out service activities, make sure the air motor is vented. Before disassembling the motor, disconnect the primary air hose to ensure that the air supply is interrupted.

Note

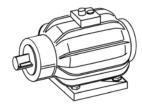
All technical data in the catalogue are typical va-

The air quality is a major factor in the service life of the motor, see ISO 8573-1.

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR STSTEMS DESCRIBED FLICTION OR IMPROPER SELECTION OR IMPROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your applications and review the information concerning the product or system in the current product catadog. Due to the variety of operating conditions and applications for these products and systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.


SALE CONDITIONS

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered into by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

Contents Pag	ge
Features	4
Radial piston air motors P1V-P	5
The steps to size	- 12
Air quality	14
Nanomist technology	15
Choice of Air Motor	16
Overview	17
Material and technical specification	18
Data for reversible basic motor	19
Data for reversible basic motor with flange	19
Data for reversible basic motor with foot bracket	19
Data for reversible basic motor with brake	20
Data for reversible basic motor with brake and flange	20
Data for reversible basic motor with brake and foot bracket	20
Data for reversible motor with gearbox and flange	21
Data for reversible motor with gearbox and foot bracket	22
Data for reversible motor with gearbox, brake and flange	23
Data for reversible motor with gearbox, brake and foot bracket	24
Torque and power graphs 25 -	- 27
Permitted shaft loading	28
Dimensions	
P1V-P007 & 012 Reversible basic motor	29
P1V-P007 & 012 Reversible basic motor with flange	29
P1V-P007 & 012 Reversible basic motor with foot bracket	29
P1V-P023 Reversible basic motor	30
P1V-P023 Reversible basic motor with flange	30
P1V-P023 Reversible basic motor with foot bracket	30
P1V-P012 Reversible basic motor with brake	31
P1V-P012 Reversible basic motor with brake and flange	31
P1V-P012 Reversible basic motor with brake and foot bracket	31
P1V-P023 Reversible basic motor with brake	32
P1V-P023 Reversible basic motor with brake and flange	32
P1V-P023 Reversible basic motor with brake and foot bracket	32
P1V-P007 & 012 Reversible motor with gearbox and flange	33
P1V-P007 & 012 Reversible motor with gearbox and foot bracket	
P1V-P023 Reversible motor with gearbox and flange	34
P1V-P023 Reversible motor with gearbox and foot brakeet	34
P1V-P007 & 012 Reversible motor with gearbox, brake and flange	
P1V-P007 & 012 Reversible motor with gearbox, brake and foot bracket	
P1V-P007 & 012 Reversible motor with gearbox, brake and flange	
P1V-P007 & 012 Reversible motor with gearbox, brake and foot bracket	
Installation instructions	
Model Order Code	38

Air motors have much smaller installation dimensions than corresponding electric motors.

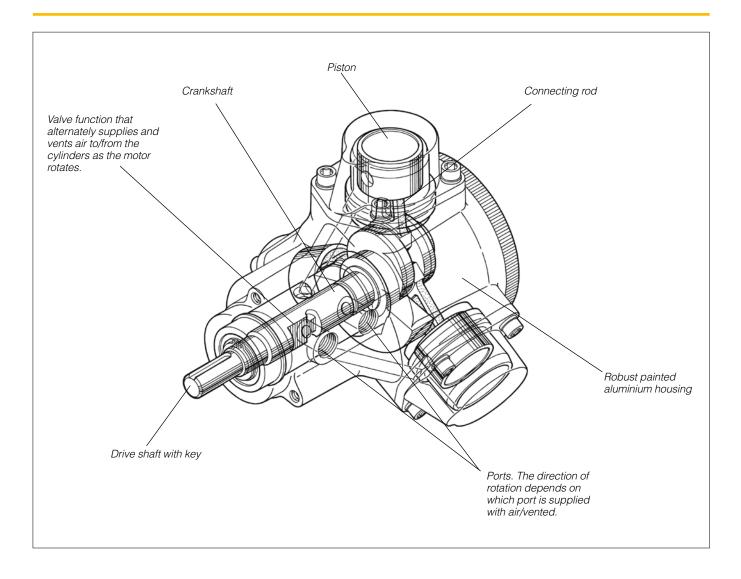
Air motors can be loaded until they stall, without damage. They are designed to be able to withstand the toughest heat, vibration, impact etc.

Air motors can be stopped and started continually without damage.

The simple design principle of air motors makes them very easy to service.

The weight of an air motor is several times less than corresponding electric motors.

Air motors can be used in the harshest environments. Most P1V-S motors are ATEX certified.



The motors are reversible as standard.

The reliability of air motors is very high, thanks to the design and the low number of moving parts.

Radial piston air motors

P1V-P is a range of air motors using the radial piston principle. Radial piston motors can operate at a low speed while delivering high torque.

The low speed keeps the noise level to a minimum, making this type of motor suitable for all applications that are subject to stringent noise level requirements.

The range includes three basic motors with 73.5, 125 and 228 watt power at 5 bar supply pressure. They can also be supplied with alternative flanges or foot brackets.

Various gearboxes are also available for these motors, to provide the right speed and torque for every application.

Almost every motor is also available in a model equipped with a spring-loaded braking unit, which releases its braking effect in response to a compressed air signal.

The P1V-P motors have an extremely robust structure, with a housing made of painted cast aluminium, and a strong outgoing keyed shaft made of steel.

The medium used by the P1V-P is oil mist. This makes the motors unique in that they require no servicing at all, apart from ensuring that the correct air quality is supplied.

Choosing the correct air motor for your application

1 Which drive principle of the air motor is suitable for your application?

- Air vane motor are suitable for regular operating cycles, speed is very small e.g. 16 rpm
- Tooth gear air motor or turbines are more suitable for continuous operation, 24 hours non-stop, speed is in a upper range, up to 140,000 rpm
- Oil free operation is often an option for these three principles of air motors.

Which motor materials are suitable for your application?

- Will the air motor work in a normal production area
- Or in a paper industry
- Or in the food processing industry, in contact or not with food
- Or in underwater usage
- Or in the medical, pharmaceutical industries
- Or in potentially explosive areas
- Others, please describe your environment

How do you calculate the motor power taking the application conditions into consideration?

- 1. Which rotational direction? Clockwise, anti-clockwise, reversible?
- 2. Air pressure working range? Which air class quality is available?
- 3. Which torque and which speed under load do you expect to obtain?
- 4. Calculate the basic power with the formula

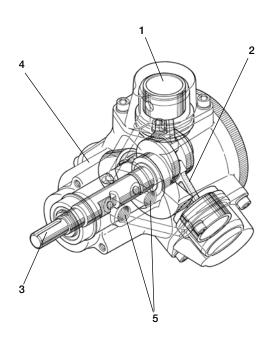
P = M x n / 9550 with P power output in kW, M nominal torque in Nm, n nominal speed in rpm

- 5. Check performance data of air motors in our catalogues. Note that all data is at 6 bar in the inlet of the air motor, max 3 meters for tubes and oil lubricated operations.
- 6. To adapt the difference of air pressure with your operation conditions, please check graphs in our catalogues and how to do it.
- 7. or you can adapt the need of air to fit your operation conditions by throttling the outlet flow in the air motor you will reduce speed without loss of torque.
- 8. Check if you need an oil free or not working operation. 1 to 2 drops of oil per cube meter are needed to optimize performance and life time of air motors. Oil free operation will decrease by 10 to 15% the performance of air motors.

4 How do you integrate your air motor in your system?

- In which position is the air motor used?
- Do you need to use a brake?
- Do you want to use your own gear box and put it somewhere else in the machine?
- Do you need extra components like fittings, tubes, valves and FRLs?

6 How do you ensure a long life and high performance of the air motor?


- Ensure you air quality is in accordance with our specifications, oil or oil free lubrication operations.
- Keep the recommended maintenance intervals

6 How do you determine the purchasing and running costs after the air motor installation?

- Keep same level of your air quality.



Principles of radial piston motor functioning

- 1 Piston
- 2 Connection rod
- 3 Shaft
- 4 Motor housing
- 5 Connection ports

Torque, power and air consumption graphs

P = power

Q = air consumption

M = torque

n = speed

Possible working range of motor.

Optimum working range of motor.

Working range with shorter service life

Air motors come in a wide range of different designs. For these motors, we have chosen the radial piston principle because of the low speed, high torque, low noise level and long service life with no service intervals.

Their compact dimensions and low weight mean these motors are easy to install in virtually all applications.

The P1V-P motors can also be fitted with a choice of gearboxes with different gear ratios, to produce the desired speed and torque at the outgoing shaft for every application.

The motor is supplied with air at either port A or port B depending on the desired direction of rotation. If air is supplied to port A, port B is used as the exhaust port. To change the direction of rotation, air is supplied to port B and port A then acts as the exhaust port. The supply air from port A or B is distributed to the pistons (1) by means of the rotating valve function on the outgoing shaft (3). The pistons (1) are attached to the outgoing shaft (3) by means of the connecting rods (2), and the exhaust air from each cylinder is also passed back to port A or B via the rotating valve.

The performance characteristics of each motor are shown in a family of curves as above, from which torque, power and air consumption can be read off as a function of speed. Power is zero when the motor is stationary and also when running at free speed (100%) with no load. Maximum power (100%) is normally developed when the motor is braked to approximately half the free speed (50%).

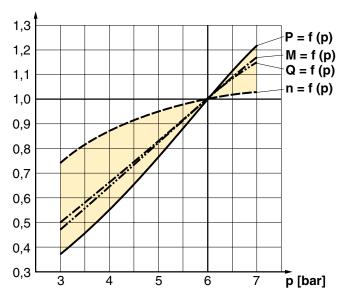
Torque at free speed is zero, but increases as soon as a load is applied, rising linearly until the motor stalls.

As the motor can stop with the pistons in various positions, it is not possible to specify an exact starting torque. However, a minimum starting torque is shown in all tables.

Air consumption is greatest at free speed, and decreases with decreasing speed, as shown in the above diagram.

The radial piston motor should not be used at speeds higher than the load speed (speed at maximum power), as this significantly reduces the service life.

Introduction

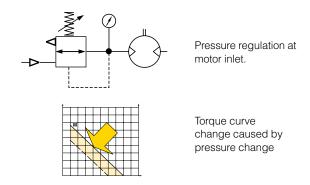

The performance of an air motor is dependent on the inlet pressure. At a constant inlet pressure, air motors exhibit the characteristic linear output torque / speed relationship. However, by simply regulating the air supply, using the techniques of throttling or pressure regulation, the output of an air motor can easily be modified. The most economical operation of an air motor (least wear, least air consumption, etc.) is reached by running close to nominal speed. By torque of M=0, the maximum speed (idle speed) is reached. Shortly before standstill (n - 0), the air motor reaches its maximum torque (Mmax = 2 x Mo). At nominal speed (nn), for example in the middle of the speed range, air motor reaches its maximum power output (Pmax).

Energy Efficiency

A pneumatic motor achieves its maximum power when it is operating as close as possible to its rated speed (50% of the rated idle speed). The energy balance is best in this area, because the compressed air is used efficiently.

Air pressure correction factors

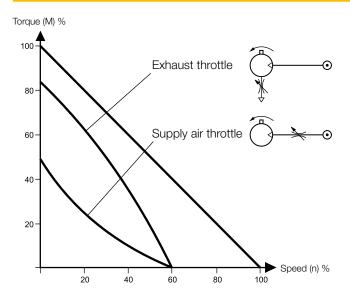
To adapt the difference of air pressure with your operation conditions


P = Power, M = Torque, Q = Air consumption, N = Speed

Pressure (p) bar / PSI	Power (P) %	Speed (n) %	Torque (M) %	Air Consumpt. (Q)
7 / 99	121	103	117	117
6 / 85	100	100	100	100
5/71	77	95	83	83
4 / 57	55	87	67	67
3 / 42	37	74	50	50

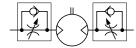
All catalogue data and curves are specified at a supply pressure of 6 bar to the motor. This diagram shows the effect of pressure on speed, specified torque, power and air consumption. Start off on the curve at the pressure used and then look up to the lines for power, torque and air consumption. Read off the correction factor on the Y axis for each curve and multiply this by the specified catalogue data in the table, or data read from the torque and power graphs.

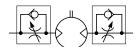
Example: at 4 bar supply pressure, the power is only 0.55 x power at 6 bar supply pressure. This example shows how strongly power falls if supply pressure is reduced. You must therefore ensure that the motor is supplied through pipes of sufficient diameter to avoid pressure drop.


The speed and torque can also be regulated by installing a pressure regulator in the inlet pipe. This means that the motor is constantly supplied with air at lower pressure, which means that when the motor is braked, it develops a lower torque on the output shaft.

Speed regulation, air flow reduction

Every size reduction or restriction on the air line, whether of the supply hose itself or fittings, before the air motor affects the amount of the supplied air. By throttling you reduce the speed of your motor and simultaneously, the required torque. That means that you reduce the motor performance. The most common way to reduce the speed of a motor is to install a flow control valve in the air outlet, you can set the speed without loss of the torque. When the motor is used in applications where it must reverse and it is necessary to restrict the speed in both directions. flow control valves with by-pass should be used in both directions. If the inlet air is restricted, the air supply is restricted and the free speed of the motor falls, but there is full pressure on the vanes at low speeds. This means that we get full torque from the motor at low speeds despite the low air flow. Since the torque curve becomes "steeper". this also means that we get a lower torque at any given speed than would be developed at full air flow. The benefit of throttling the inlet is that air consumption is reduced, whereas throttling the exhaust air maintains a slightly higher starting torque.

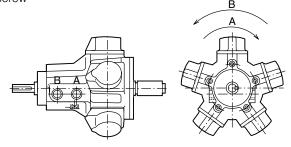



Throttling

Supply or exhaust throttling, non-reversible motor

Supply throttling, reversible motor

Exhaust throttling, reversible motor

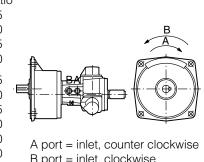


Theoretical torque curve change caused by throttling

Direction of motor rotation

Basic motor - also with brake

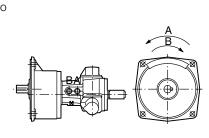
The rotation direction on the output shaft is sen from the back of the motor(right-hand rotation = the motor can be used as a screwdriver to assemble one standard right - hand threaded screw



A port = inlet, counter clockwise B port = inlet, clockwise

Motor with gearbox

Motors equipped with gearboxes with low ratios (with or without brakes) work with rotation directions like the basic motors.


11101010.	
Motor	Ratio
P1V-P007**0440	5
P1V-P007**0220	10
P1V-P007**0147	15
P1V-P007**0110	20
P1V-P012**0360	5
P1V-P012**0180	10
P1V-P012**0120	15
P1V-P012**0090	20
P1V-P012**0060	30
P1V-P012**0050	40
P1V-P023**0300	5
P1V-P023**0150	10
P1V-P023**0100	15
P1V-P023**0075	20
P1V-P023**0050	30
P1V-P023**0038	40

B port = inlet, clockwise

All other P1V-P motors with higher ratios in the gearboxes to get the lowest speed and the highest torques are equipped with one more stage inb the gearbox. This makes the direction of the rotation opposite to the basic motors and the motors equipped with gearboxes with low ratios.

Motor	Ratio
P1V-P012**0040	50
P1V-P012**0030	60
P1V-P012**0022	80
P1V-P012**0018	100
P1V-P012**0015	120
P1V-P012**0012	160
P1V-P012**0009	200
P1V-P023**0030	50
P1V-P023**0025	60
P1V-P023**0018	80
P1V-P023**0015	100
P1V-P023**0012	120
P1V-P023**0009	160
P1V-P023**0007	200

A port = inlet, counter clockwise B port = inlet, clockwise

Compressed air quality

Oil and oil mist are avoided whenever possible to ensure a clean work environment. In addition, purchasing, installation and maintenance of oil equipment can be expensive. All users in all industries now try to avoid using components which have to be lubricated.

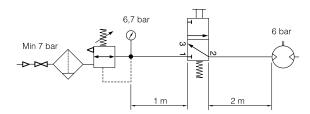
Oil mist

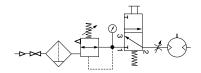
If oil mist is used (approx. 1 drop of oil per m³ of compressed air), the oil not only acts as a lubricant but also protects against corrosion. This means that compressed air with a certain water content may be used without causing corrosion problems inside the motor. ISO8573-1 purity class 3.-.5 may be used without difficulty. The following oils are recommended for use in the food stuffs industry: Shell Cassida Fluid HF 32 or Klüberoil 4 UH 1-32

ISO 8573-1 purity classes

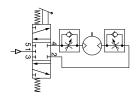
Quality class	Cor particle size (µm)	max. concentration (mg/m³)	Water max. pressure dew point (°C)	Oil max. concentration (mg.m³)	
1	0.1	0.1	-70	0.01	
2	1	1	-40	0.1	
3	5	5	-20	1.0	
4	15	8	+3	5.0	
5	40	10	+7	25	
6	-	-	+10	-	

For example: compressed air to purity class 3.4.3. This means a 5 μ m filter (standard filter), dew point +3°C (refrigerant cooled) and an oil concentration of 1,0 mg oil/m³ (as supplied by a standard compressor with a standard filter).

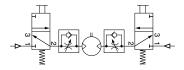

Air supply


Since the supply pressure at the air motor inlet port is of considerable importance for obtaining the power, speed and torque quoted in the catalogue, the recommendations below should be observed.

The following data must be complied with:


- Supply pressure: 7 bar
- Regulator pressure setting: 6.7 bar
- Pipe length between air treatment unit and valve: max. 1 m
- Pipe length valve and air motor: max 2 m

The pressure drop through the air preparation unit, pipe, valve means that 6 bar pressure is obtained at the motor supply port. Please refer to the correction diagram and factors to see what lower supply pressure means for power, speed and torque.



Shut-off, filtering, pressure regulation and control valve

Reversible motor with 5/3 control valve

Reversible motor with two 3/2 control valves

The air with which the motor is supplied must be filtered and regulated. Directional valves are needed to provide it with air, to get the motor to rotate when we want it to. These valves can be equipped with several means of actuation, such as electric, manual and pneumatic control. When the motor is used in a non-reversible application, it is sufficient to use a 2/2 or 3/2 valve function for supply. Either one 5/3 or two 3/2 valves functions are needed for a reversible motor, to ensure that the motor receives compressed air and the residual air outlet is vented. A flow control valve can be installed in the supply pipe to regulate the motor speed if the motor is not used as a reversible motor.

One flow control valve with by-pass is needed to regulate each direction of rotation if the motor is used as a reversible motor. The built-in check valve will then allow air from the residual air outlet to escape through the outlet port in the control valve. The compressed air supply must have sufficiently large pipes and valves to give the motor the maximum power. The motor needs 6 bar at the supply port all the time. For example, a reduction of pressure to 5 bar reduces the power developed to 77% and to 55% at 4 bar!

Silencing

Exhaust silencer

The noise from an air motor consists of both mechanical noise and a pulsating noise from the air flowing out of the outlet. The installation of the motor has a considerable effect on mechanical noise. It should be installed so that no mechanical resonance effects can occur. The outlet air creates a noise level which can amount to 115 dB(A) if the air is allowed to exhaust freely into the atmosphere. Various types of exhaust silencers are used to reduce this level. The most common type screws directly onto the exhaust port of the motor. Since the motor function causes the exhaust air to pulsate, it is a good idea to allow the air to exhaust into some kind of chamber first, which reduces the pulsations before they reach the silencer. The best silencing method is to connect a soft plastic hose to a large central silencer with the largest possible area, to reduce the speed of the outflowing air as far as possible.

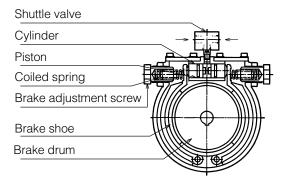
NOTE! Remember that if a silencer which is too small or is blocked, generates back pressure on the outlet side of the motor, which reduces the motor power.

CE marking

The air motors are supplied as "Components for installation" – the installer is responsible for ensuring that the motors are installed safely in the overall system. Parker Pneumatic guarantees that its products are safe, and as a supplier of pneumatic equipment we ensure that the equipment is designed and manufactured in accordance with the applicable EU directive.

Most of our products are classed as components as defined by various directives, and although we guarantee that the components satisfy the fundamental safety requirements of the directives to the extent that they are our responsibility, they do not usually carry the CE mark. Nevertheless, most P1V-S motors carry the CE mark because they are ATEX certified (for use in explosive atmospheres).

The following are the currently applicable directives:

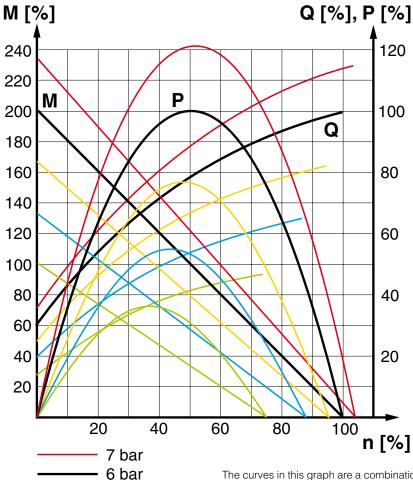

- Machinery Directive(essential health and safety requirements relating to the design and structure of machines and safety components)
- EMC Directive
- Simple Pressure Vessels Directive
- Low Voltage Directive

P1V-P Air Motors with brake

P1V-P Air Motors can be braked by closing the supply exhaust air. This gives a brake torque corresponding the average start torque if piping distance between valve and motor is short. Air Motors with powerful brake is necessary if torque is applied from load side, P1V-P with built on brake can be used in those cases.

Features

- 1. Non tase adjustment is available for torque as needed.
- 2. Simple design with little trouble and long life.
- 3. The design makes the complete motor with the brake low weight.



It is load working type double lock air brake with brake force turned out by pushing force of coiled spring and release conducted by air pressure as usual. Brake shoe is opened from drum as piston for release works after air pressure is applied to supply port of air motor and simultaniously to brake cylinder.

When the rotation of motor is stopped and air pressure is exhausted, the air pressure of the brake cylinder is also exhausted instantly and brake shoe is pushed to drum with pushing force of the coiled spring. The adjustment of brake torque is conducted with brake adjusting screw from the outside according to the necessary torque.

Torque, power and air consumption graphs

P = power Q = air consumption
M = torque n = speed

5 bar

4 bar

3 bar

The curves in this graph are a combination of the torque, power and air consumption graphs. The values from the correction diagram have also been used for the curves for the different pressure values. The graph also shows that is it very important to ensure that the pressure supplied to the inlet port of the motor is correct, in order to allow the motor to work at maximum capacity. If the valve supplying a large motor is too small or if the supply line is underspecified, the pressure at the inlet port may be so low that the motor is unable to do its work. One solution would be to upgrade the valve and supply system, or alternatively you could replace the motor with a smaller motor with lower air consumption. The result would be increased pressure at the inlet port, which means that the smaller motor could carry out the necessary work. However, you may need to select a smaller motor with a lower free speed in order to obtain sufficient torque at the outgoing shaft.

Choice of an air motor, general

The motor to be used should be selected by starting with the torque needed at a specific spindle speed. In other words, to choose the right motor, you have to know the required speed and torque. Since maximum power is reached at half the motor's free speed, the motor should be chosen so that the point aimed at is as close as possible to the maximum power of the motor.

The design principle of the motor means that higher torque is generated when it is braked, which tends to increase the speed. This means that the motor has a kind of speed selfregulation function built in. Use the following graph to choose the correct motor size and the correct type of gear as appropriate. The graph contains the points for the maximum torque of each motor at maximum power. Put in your point on the graph and select a marked point above and to the right of the point you need.

Then check the characteristic graph of each motor to find more accurate technical data. Always select a motor where the data required is in the orange field. Also use the correction diagram to see what it would mean to use different air supply pressures or different air flow in the motor.

Tip: Select a motor which is slightly too fast and powerful, regulate its speed and torque with a pressure regulator and/or restriction to achieve the optimum working point.

Do you need any support to select the right air motor, please feel free to consult your local sales office.

Specifying air quality (purity) in accordance with ISO8573-1:2010, the international standard for **Compressed Air Quality**

ISO8573-1 is the primary document used from the ISO8573 series as it is this document which specifies the amount of contamination allowed in each cubic metre of compressed air.

ISO8573-1 lists the main contaminants as Solid Particulate, Water and Oil. The purity levels for each contaminant are shown separately in tabular form, however for ease of use, this document combines all three contaminants into one easy to use table.

		;	Solid Particulate	Water		Oil	
ISO8573-1:2010 CLASS	Maximum	number of partic	Mass	Vapour	Liquid	Total Oil (aerosol liquid and vapour)	
	0,1 - 0,5 micron	0,5 - 1 micron	1 - 5 micron	Concentration mg/m ³	Pressure Dewpoint	g/m ³	mg/m ³
0		As sp	pecified by the equ	plier and more	e stringent tha	an Class 1	
1	≤ 20 000	≤ 400	≤ 10	-	≤ -70 °C	-	0,01
2	≤ 400 000	≤ 6 000	≤ 100	-	≤ -40 °C	-	0,1
3	-	≤ 90 000	≤ 1 000	-	≤ -20 °C	-	1
4	-	-	≤ 10 000	-	≤ +3 °C	-	5
5	-	-	≤ 100 000	-	≤ +7 °C	-	-
6	-	-	-	≤ 5	≤ +10 °C	-	-
7			5 - 10	-	≤ 0,5	-	
8	-	-	-	-	-	0,5 - 5	-
9	-	-	-	-	-	5 - 10	-
X	-	-	-	> 10	-	> 10	> 10

Specifying air purity in accordance with ISO8573-

When specifying the purity of air required, the standard must always be referenced, followed by the purity class selected for each contaminant (a different purity class can be selected for each contamination if required).

An example of how to write an air quality specification is shown

ISO 8573-1:2010 Class 1.2.1

ISO 8573-1:2010 refers to the standard document and its revision, the three digits refer to the purity classifications selected for solid particulate, water and total oil. Selecting an air purity class of 1.2.1 would specify the following air quality when operating at the standard's reference conditions:

Class 1 - Particulate

In each cubic metre of compressed air, the particulate count should not exceed 20,000 particles in the 0.1 - 0.5 micron size range, 400 particles in the 0.5 - 1 micron size range and 10 particles in the 1 - 5 micron size range.

Class 2 - Water

A pressure dewpoint (PDP) of -40°C or better is required and no liquid water is allowed.

Class 1 - Oil

In each cubic metre of compressed air, not more than 0.01mg of oil is allowed. This is a total level for liquid oil, oil aerosol and oil vapour.

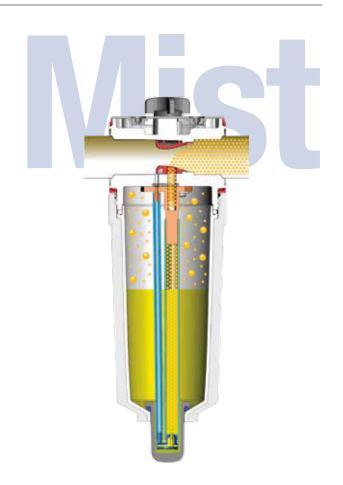
ISO8573-1:2010 Class zero

- Class 0 does not mean zero contamination.
- Class 0 requires the user and the equipment manufacturer to agree contamination levels as part of a written specification.
- The agreed contamination levels for a Class 0 specification should be within the measurement capabilities of the test equipment and test methods shown in ISO8573 Pt 2 to Pt 9.
- The agreed Class 0 specification must be written on all documentation to be in accordance with the standard.
- Stating Class 0 without the agreed specification is meaningless and not in accordance with the standard.
- A number of compressor manufacturers claim that the delivered air from their oil-free compressors is in compliance with Class 0.
- If the compressor was tested in clean room conditions, the contamination detected at the outlet will be minimal. Should the same compressor now be installed in typical urban environment, the level of contamination will be dependent upon what is drawn into the compressor intake, rendering the Class 0 claim invalid.
- A compressor delivering air to Class 0 will still require purification equipment in both the compressor room and at the point of use for the Class 0 purity to be maintained at the application.
- Air for critical applications such as breathing, medical, food, etc typically only requires air quality to Class 2.2.1 or Class 2.1.1.
- Purification of air to meet a Class 0 specification is only cost effective if carried out at the point of use.

New Technology

The P3X Lite air preparation system is constructed from ultra light weight technopolymers instead of the traditional aluminium or zinc die cast, this means that is up to 45% lighter than conventional units.

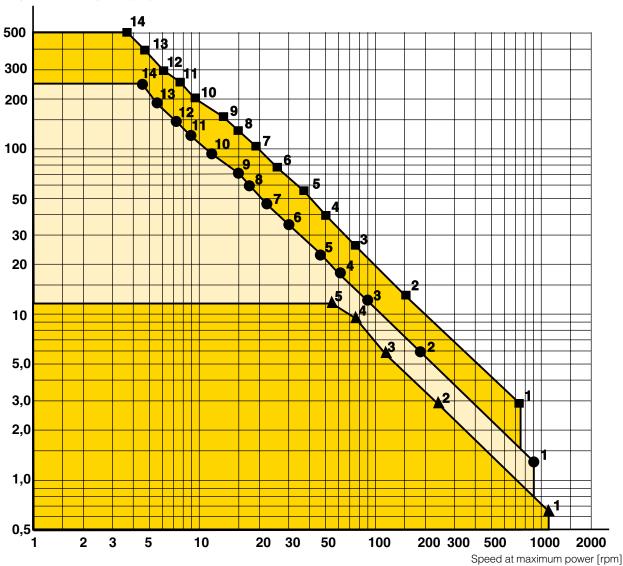
This non-metal construction also means that the P3X Lite is corrosion free enabling it to be used in harsh industrial environments where anti freeze or aggressive synthetic oils are present.


The use of technopolymers in the design of P3X Lite has facilitated a universal body design, this has resulted in reducing the number of variants required to cover the full spectrum of applications. This can dramatically lower logistic costs and simplify stock holding for customers making the P3X Lite a very cost effective solution.

New Nano Mist Technology, New Lubricator Concept. Self-Adjusting.

With conventional lubricators, only the oil volume per time unit can be adjusted. If the demand changes, the quantity dispensed still remains constant.

The P3X Lite lubricator concept sets new benchmarks here. For the first time, the oil volume is automatically adjusted to the flow rate. This ensures that there is neither too little nor too much oil in the system, which leads to clear economic and ecological advantages. In addition, with conventional systems, the distance between the lubricator and the equipment has to be less than 8 meters. With larger distances, the dispensed oil is deposited as a wall flow. The new lubricator principle of the P3X Lite allows for distances of up to 40 meters. This opens up new scope for the design of even more efficient production systems.



Choice of an air motor

The motor to be used should be selected by starting with the torque needed at a specific shaft speed. In other words, to choose the right motor, you have to know the required speed and torque. Since maximum power is reached at half the motor's free speed, the motor should be chosen so that the oprating point is as close as possible to the maximum power of the motor.

The design principle of the motor means that higher torque is generated when it is braked, which tends to increase the speed, etc. This means that the motor has a kind of speed self-regulation function built in.

Tip: Select a motor which is slightly too fast and powerful, then regulate its speed and torque with a pressure regulator and/or throttle to achieve the optimum working point.

Use the above graph to choose the correct motor size. The graph contains the points for the maximum torque of each motor at maximum output. Add your operating point to the graph, then select a marked point above and to the right of your point.

Then use the correct working diagram of the chosen motor to get more detailed technical data. Always select a motor whose requisite technical data are in the yellow area. Also use the correction diagram to find out what operation with different supply pressures would mean for the motor.

A 1 Basic P1V-P007A02200, Flange P1V-P007B02200, Foot P1V-P007F02200

▲2 Flange P1V-P007B00440, Foot P1V-P007F00440

P1V-P007 **▲**3 Flange P1V-P007B00220, Foot P1V-P007F00220

A 4 Flange P1V-P007B00147, Foot P1V-P007F00147

15 Flange P1V-P007B00110, Foot P1V-P007F00110

Basic P1V-P012A01800, Flange P1V-P012B01800, Foot P1V-P012F01800 or these as brake motors Basic P1V-P012AB1800, Flange P1V-P012BB1800, Foot P1V-P012FB1800 P1V-P012

Flange P1V-P012B00360, Foot P1V-P012F00360 or these as brake motors Flange P1V-P012BB0360, Foot P1V-P012FB0360

3 Flange P1V-P012B00180, Foot P1V-P012F00180 or these as brake motors Flange P1V-P012BB0180, Foot P1V-P012FB0180

4 Flange P1V-P012B00120, Foot P1V-P012F00120 or these as

brake motors Flange P1V-P012BB0120, Foot P1V-P012FB0120

Flange P1V-P012B00090, Foot P1V-P012F00090 or these as brake motors Flange P1V-P012BB0090, Foot P1V-P012FB0090

Flange P1V-P012B00060, Foot P1V-P012F00060 or these as brake motors Flange P1V-P012BB0060, Foot P1V-P012FB0060

9 7 Flange P1V-P012B00050, Foot P1V-P012F00050 or these as brake motors Flange P1V-P012BB0050, Foot P1V-P012FB0050

8 Flange P1V-P012B00040, Foot P1V-P012F00040 or these as

brake motors Flange P1V-P012BB0040, Foot P1V-P012FB0040 Flange P1V-P012B00030. Foot P1V-P012F00030 or these as

brake motors Flange P1V-P012BB0030 Foot P1V-P012FB0030 • 10 Flange P1V-P012B00022, Foot P1V-P012F00022 or these as

brake motors Flange P1V-P012BB0022, Foot P1V-P012FB0022 • 11 Flange P1V-P012B00018, Foot P1V-P012F00018 or these as

brake motors Flange P1V-P012BB0018, Foot P1V-P012FB0018

Flange P1V-P012B00015, Foot P1V-P012F00015 or these as brake motors Flange P1V-P012BB0015, Foot P1V-P012FB0015

13 Flange P1V-P012B00012, Foot P1V-P012F00012 or these as brake motors Flange P1V-P012BB0012, Foot P1V-P012FB0012

14 Flange P1V-P012B00009, Foot P1V-P012F00009 o these as brake motors Flange P1V-P012BB0009, Foot P1V-P012FB0009

1 Basic P1V-P023A01500, Flange P1V-P023B01500, Foot P1V-P023F01500 or these as brake motors Basic P1V-P023AB1500, Flange P1V-P023BB1500, Foot P1V-P023FB1500 P1V-P023

2 Flange P1V-P023B00300, Foot P1V-P023F00300 or these as brake motors Flange P1V-P023BB0300, Foot P1V-P023FB0300

3 Flange P1V-P023B00150, Foot P1V-P023F00150 or these as brake motors Flange P1V-P023BB0150, Foot P1V-P023FB0150

4 Flange P1V-P023B00050, Foot P1V-P023F00050 or these as brake motors Flange P1V-P023BB0100, Foot P1V-P023FB0100

5 Flange P1V-P023B00075, Foot P1V-P023F00075 or these as brake motors Flange P1V-P023BB0075, Foot P1V-P023FB0075

6 Flange P1V-P023B00050, Foot P1V-P023F00050 or these as brake motors Flange P1V-P023BB0050, Foot P1V-P023FB0050

7 Flange P1V-P023B00038. Foot P1V-P023F00038 or these as brake motors Flange P1V-P023BB0038, Foot P1V-P023FB0038

8 Flange P1V-P023B00030, Foot P1V-P023F00030 or these as brake motors Flange P1V-P023BB0030, Foot P1V-P023FB0030

9 Flange P1V-P023B00025, Foot P1V-P023F00025 or these as brake motors Flange P1V-P023BB0025 Foot P1V-P023FB0025

10 Flange P1V-P023B00018, Foot P1V-P023F00018 or these as brake motors Flange P1V-P023BB0018 , Foot P1V-P023FB0018

11 Flange P1V-P023B00015, Foot P1V-P023F00015 or these as brake motors Flange P1V-P023BB0015, Foot P1V-P023FB0015

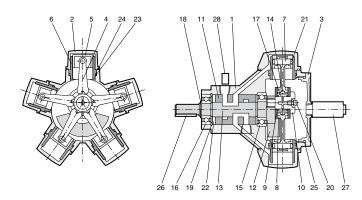
12 Flange P1V-P023B00012, Foot P1V-P023F00012 or these as brake motors Flange P1V-P023BB0012, Foot P1V-P023FB0012

13 Flange P1V-P023B00009, Foot P1V-P023F00009 or these as brake motors Flange P1V-P023BB0009, Foot P1V-P023FB0009

14 Flange P1V-P023B00007. Foot P1V-P023F00007 or these as brake motors Flange P1V-P023BB0007, Foot P1V-P023FB0007

Technical data

Working pressure Working temperature Medium Max 6 bar -10 °C to +70 °C


Oil mist, dry compressed air purity class 3.4.4 according to ISO8573-1 Grease lubricated

Gearboxes

Table and diagram data

All values are typical values, with a speed tolerance of $\pm 10\%$

P1V-P023 P1V-P007 and P1V-P012

Material specification

Nr	Designation	Material	Qnty.
1	housing	Aluminium alloy casting	1
2	Cylinder cover	Aluminium alloy die-casting	3(5)
3	End cover	Synthetic resin	1
4	Connection rod	Aluminium alloy die-casting	3(5)
5	Piston	Brass casting	3(5)
6	Sleeve	Grey cast iron	3(5)
7	Piston pin	Carbon steel	3(5)
8	Ring	Carbon steel	2
9	Thrust washer	Carbon steel	2
10	Crank pin	Chromium-Molybdenum stee	el 1
11	Valve bush	Grey cast iron	1
12	Balance weight	Carbon steel	1
13	Shaft	Chrome-Molybdenum steel	1
14	Liner	Synthetic resin	3(5)
15	Bearing	-	1
16	Bearing	-	1
17	Needle bearing	-	1
18	Snap ring	-	1
19	Snap ring	-	1
20	Grease nipple	-	1
21	Copper rivet	-	6(10)
22	Oil seal	Nitrile rubber	1
23	O-ring	Nitrile rubber	3(5)
24	O-ring	Nitrile rubber	3(5)
25	O-ring	Nitrile rubber	3(5)
26	Parallel single key	-	1
27	Silencer	-	1
28	Adapter to G-thread	Aluminium	2

Sound levels

Sound levels are measured at free speed with the measuring instrument positioned 1 m away from the air motor, see the table below.

Air motor	Free outlet	With outlet silencer	Exhaust air removed with pipes to another
	dB (A)	dB (A)	room dB (A)
P1V-P007	95	75	69
P1V-P012	100	80	72
P1V-P023	100	80	72

Air motors

All Hiotors			
Air motor	P1V-P007 P1V-P012		P1V-P023
Air flow required, NI/s	3,34	4,34	6,67
Air flow required, NI/min	200	260	400
Min. internal diameter of pipe, mm,	6	10	10
Choice of air treatment unit: reco	mmended min. air flow in I/m	nin at 7,5 bar air supply and 0,	8 bar pressure drop
	150		
		210	
			300
	e of valve: recommended mi		
(Qn is the flow through the	valve at 6 bar supply pressu	re and 1 bar pressure drop o	ver the valve).
	200		
		260	
			400

NOTE! All technical data are based on a working pressure of 5 bar and with oil. Speed tolerance accuracy is -+10%.

Data for reversible basic motor

power	Speed at max power	Torque at max power	Min start torque	Stall torque	Brake torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	Nm	Nm	Nm	Nm	l/s		mm	Kg	
0,0735	1100	0,637	0,686	1,18	-	3,34	G1/4	6	1,45	P1V-P007A02200
0,125	900	1,37	1,96	2,94	-	4,34	G1/4	10	2,5	P1V-P012A01800
0,228	750	2,94	4,71	5,88	-	6,67	G3/8	10	4,6	P1V-P023A01500

Data for reversible basic motor with flange

Max power	Speed at max power	Torque at max power	Min start torque	Stall torque	Brake torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	Nm	Nm	Nm	Nm	l/s		mm	Kg	
0,0735	1100	0,637	0,686	1,18	-	3,34	G1/4	6	1,45	P1V-P007B02200
0,125	900	1,37	1,96	2,94	-	4,34	G1/4	10	2,5	P1V-P012B01800
0,228	750	2,94	4,71	5,88	-	6,67	G3/8	10	4,6	P1V-P023B01500

Data for reversible basic motor with foot bracket

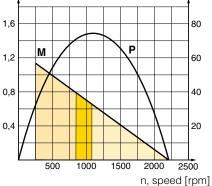
Max power	Speed at max power	Torque at max power	Min start torque	Stall torque	Brake torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	Nm	Nm	Nm	Nm	l/s		mm	Kg	
0,0735	1100	0,637	0,686	1,18	-	3,34	G1/4	6	1,45	P1V-P007F02200
0,125	900	1,37	1,96	2,94	-	4,34	G1/4	10	2,5	P1V-P012F01800
0,228	750	2,94	4,71	5,88	-	6,67	G3/8	10	4,6	P1V-P023F01500

NOTE! All technical data are based on a working pressure of 5 bar and with oil. Speed tolerance accuracy is -+10%.

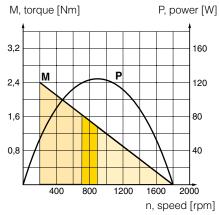
Data for reversible basic motor with brake

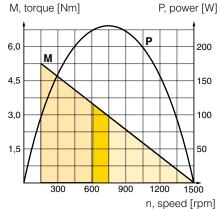
Max power	Speed at max power	Torque at max power	Min start torque	Stall torque	Brake torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	Nm	Nm	Nm	Nm	l/s		mm	Kg	
0,125	900	1,37	1,96	2,94	3,24	4,34	G1/4	10	4,4	P1V-P012AB1800
0,228	750	2,94	4,71	5,88	6,47	6,67	G3/8	10	7,8	P1V-P023AB1500

Data for reversible basic motor with brake and flange


Max power	Speed at max power	Torque at max power	Min start torque	Stall torque	Brake torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	Nm	Nm	Nm	Nm	l/s		mm	Kg	
0,125	900	1,37	1,96	2,94	3,24	4,34	G1/4	10	4,4	P1V-P012BB1800
0,228	750	2,94	4,71	5,88	6,47	6,67	G3/8	10	7,8	P1V-P023BB1500

Data for reversible basic motor with brake and foot bracket


Max power	Speed at max power	Torque at max power	Min start torque	Stall torque	Brake torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	Nm	Nm	Nm	Nm	l/s		mm	Kg	
0,125	900	1,37	1,96	2,94	3,24	4,34	G1/4	10	5,2	P1V-P012FB1800
0,228	750	2,94	4,71	5,88	6,47	6,67	G3/8	10	9,4	P1V-P023FB1500


P1V-P007**2200

P1V-P012**1800

P1V-P023**1500

Possible working range of motor.

Optimum working range of motor.

Working range with shorter service life.

NOTE! All technical data are based on a working pressure of 5 bar and with oil. Speed tolerance accuracy is -+10%.

Data for reversible motor with gearbox and flange

Max power	Speed at max power rpm	Torque at max power Nm	Min start torque Nm	Stall torque Nm	Brake torque Nm	Air con- sumption at max power l/s	Conn.	Min pipe ID	Weight Kg	Order code
0,0662		2,84	2,94	4,90		3,34	G1/4	6	4,0	P1V-P007B00440
0,0662		5,69	5,88	9,81	_	3,34	G1/4	6	4,0	P1V-P007B00220
0,0662		8,53	8,83	15,7	_	3,34	G1/4	6	4,0	P1V-P007B00147
0,0662	55	11,5	11,8	20,6	_	3,34	G1/4	6	4,0	P1V-P007B00110
0,110	180	5,88	8,83	12,7	-	4,34	G1/4	10	6,7	P1V-P012B00360
0,110	90	11,8	17,7	26,5	-	4,34	G1/4	10	6,7	P1V-P012B00180
0,110	60	17,7	26,5	39,2	-	4,34	G1/4	10	6,7	P1V-P012B00120
0,110	45	23,5	35,3	53,0	-	4,34	G1/4	10	6,7	P1V-P012B00090
0,110	30	35,3	53,0	78,5	-	4,34	G1/4	10	8,7	P1V-P012B00060
0,110	22,5	47,1	70,6	106	-	4,34	G1/4	10	8,7	P1V-P012B00050
0,110	18	58,8	79,4	132	-	4,34	G1/4	10	8,7	P1V-P012B00040
0,110	15	70,6	106	157	-	4,34	G1/4	10	8,7	P1V-P012B00030
0,110	11,2	93,2	139	206	-	4,34	G1/4	10	8,7	P1V-P012B00022
0,103	9	118	175	250	-	4,34	G1/4	10	11,7	P1V-P012B00018
0,103	7,5	137	206	300	-	4,34	G1/4	10	11,7	P1V-P012B00015
0,103	5,6	176	261	373	-	4,34	G1/4	10	11,7	P1V-P012B00012
0,103	4,5	233	350	500	-	4,34	G1/4	10	11,7	P1V-P012B00009
0,199	150	12,7	20,6	26,5	-	6,67	G3/8	10	10,5	P1V-P023B00300
0,199	75	26,5	41,2	53,0	-	6,67	G3/8	10	10,5	P1V-P023B00150
0,199	50	39,2	61,8	79,4	-	6,67	G3/8	10	10,5	P1V-P023B00100
0,199	37,5	53,0	82,4	106	-	6,67	G3/8	10	10,5	P1V-P023B00075
0,199	25	78,5	124	159	-	6,67	G3/8	10	14,0	P1V-P023B00050
0,199	18,7	106	165	212	-	6,67	G3/8	10	14,0	P1V-P023B00038
0,199	15	132	206	265	-	6,67	G3/8	10	14,0	P1V-P023B00030
0,199	12,5	157	247	318	-	6,67	G3/8	10	14,0	P1V-P023B00025
0,199	9,3	203	314	402	-	6,67	G3/8	10	14,0	P1V-P023B00018
0,191	7,5	250	392	490	-	6,67	G3/8	10	20,5	P1V-P023B00015
0,191	6,2	300	471	598	-	6,67	G3/8	10	20,5	P1V-P023B00012
0,191	4,6	396	628	785	-	6,67	G3/8	10	20,5	P1V-P023B00009
0,191	3,7	500	785	981	-	6,67	G3/8	10	20,5	P1V-P023B00007

NOTE! All technical data are based on a working pressure of 5 bar and with oil. Speed tolerance accuracy is -+10%.

Data for reversible motor with gearbox and foot bracket

Max power kW	Speed at max power rpm	Torque at max power Nm	Min start torque Nm	Stall torque Nm	Brake torque Nm	Air consumption at max power	Conn.	Min pipe ID	Weight Kg	Order code
0,0662	220	2,84	2,94	4,90	-	3,34	G1/4	6	3,5	P1V-P007F00440
0,0662	110	5,69	5,88	9,81	-	3,34	G1/4	6	4,0	P1V-P007F00220
0,0662	73,3	8,53	8,83	15,7	-	3,34	G1/4	6	3,5	P1V-P007F00147
0,0662	55	11,5	11,8	20,6	-	3,34	G1/4	6	3,5	P1V-P007F00110
0,110	180	5,88	8,83	12,7	-	4,34	G1/4	10	6,2	P1V-P012F00360
0,110	90	11,8	17,7	26,5	-	4,34	G1/4	10	6,2	P1V-P012F00180
0,110	60	17,7	26,5	39,2	-	4,34	G1/4	10	6,2	P1V-P012F00120
0,110	45	23,5	35,3	53,0	-	4,34	G1/4	10	6,2	P1V-P012F00090
0,110	30	35,3	53,0	78,5	-	4,34	G1/4	10	8,2	P1V-P012F00060
0,110	22,5	47,1	70,6	106	-	4,34	G1/4	10	8,2	P1V-P012F00050
0,110	18	58,8	79,4	132	-	4,34	G1/4	10	8,2	P1V-P012F00040
0,110	15	70,6	106	157	-	4,34	G1/4	10	8,2	P1V-P012F00030
0,110	11,2	93,2	139	206	-	4,34	G1/4	10	8,2	P1V-P012F00022
0,103	9	118	175	250	-	4,34	G1/4	10	11,2	P1V-P012F00018
0,103	7,5	137	206	300	-	4,34	G1/4	10	11,2	P1V-P012F00015
0,103	5,6	176	261	373	-	4,34	G1/4	10	11,2	P1V-P012F00012
0,103	4,5	233	350	500	-	4,34	G1/4	10	11,2	P1V-P012F00009
0,199	150	12,7	20,6	26,5	-	6,67	G3/8	10	10,0	P1V-P023F00300
0,199	75	26,5	41,2	53,0	-	6,67	G3/8	10	10,0	P1V-P023F00150
0,199	50	39,2	61,8	79,4	-	6,67	G3/8	10	10,0	P1V-P023F00100
0,199	37,5	53,0	82,4	106	-	6,67	G3/8	10	10,0	P1V-P023F00075
0,199	25	78,5	124	159	-	6,67	G3/8	10	13,5	P1V-P023F00050
0,199	18,7	106	165	212	-	6,67	G3/8	10	13,5	P1V-P023F00038
0,199	15	132	206	265	-	6,67	G3/8	10	13,5	P1V-P023F00030
0,199	12,5	157	247	318	-	6,67	G3/8	10	13,5	P1V-P023F00025
0,199	9,3	203	314	402	-	6,67	G3/8	10	13,5	P1V-P023F00018
0,191	7,5	250	392	490	-	6,67	G3/8	10	20,0	P1V-P023F00015
0,191	6,2	300	471	598	-	6,67	G3/8	10	20,0	P1V-P023F00012
0,191	4,6	396	628	785	_	6,67	G3/8	10	20,0	P1V-P023F00009
0,191	3,7	500	785	981	-	6,67	G3/8	10	20,0	P1V-P023F00007

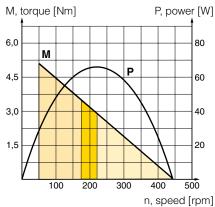
NOTE! All technical data are based on a working pressure of 5 bar and with oil. Speed tolerance accuracy is -+10%.

Data for reversible motor with gearbox, brake and flange

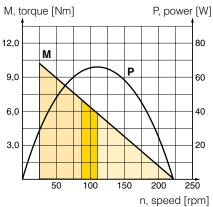
Max power	Speed at max power rpm	Torque at max power Nm	Min start torque Nm	Stall torque Nm	Brake torque Nm	Air con- sumption at max power l/s	Conn.	Min pipe ID mm	Weight Kg	Order code
0,110	180	5,88	8,83	12,7	14,7	4,34	G1/4	10	8,0	P1V-P012BB0360
0,110	90	11,8	17,7	26,5	29,4	4,34	G1/4	10	8,0	P1V-P012BB0180
0,110	60	17,7	26,5	39,2	44,1	4,34	G1/4	10	8,0	P1V-P012BB0120
0,110	45	23,5	35,3	53,0	58,8	4,34	G1/4	10	8,0	P1V-P012BB0090
0,110	30	35,3	53,0	78,5	88,3	4,34	G1/4	10	10,0	P1V-P012BB0060
0,110	22,5	47,1	70,6	106	118	4,34	G1/4	10	10,0	P1V-P012BB0050
0,110	18	58,8	79,4	132	147	4,34	G1/4	10	10,0	P1V-P012BB0040
0,110	15	70,6	106	157	177	4,34	G1/4	10	10,0	P1V-P012BB0030
0,110	11,2	93,2	139	206	235	4,34	G1/4	10	10,0	P1V-P012BB0022
0,103	9	118	175	250	283	4,34	G1/4	10	11,7	P1V-P012BB0018
0,103	7,5	137	206	300	339	4,34	G1/4	10	13,0	P1V-P012BB0015
0,103	5,6	176	261	373	453	4,34	G1/4	10	13,0	P1V-P012BB0012
0,103	4,5	233	350	500	567	4,34	G1/4	10	13,0	P1V-P012BB0009
0,199	150	12,7	20,6	26,5	29,4	6,67	G3/8	10	13,5	P1V-P023BB0300
0,199	75	26,5	41,2	53,0	58,8	6,67	G3/8	10	13,5	P1V-P023BB0150
0,199	50	39,2	61,8	79,4	88,3	6,67	G3/8	10	13,5	P1V-P023BB0100
0,199	37,5	53,0	82,4	106	118	6,67	G3/8	10	13,5	P1V-P023BB0075
0,199	25	78,5	124	159	177	6,67	G3/8	10	17,0	P1V-P023BB0050
0,199	18,7	106	165	212	235	6,67	G3/8	10	17,0	P1V-P023BB0038
0,199	15	132	206	265	294	6,67	G3/8	10	17,0	P1V-P023BB0030
0,199	12,5	157	247	318	353	6,67	G3/8	10	17,0	P1V-P023BB0025
0,199	9,3	203	314	402	471	6,67	G3/8	10	17,0	P1V-P023BB0018
0,191	7,5	250	392	490	549	6,67	G3/8	10	24,5	P1V-P023BB0015
0,191	6,2	300	471	598	657	6,67	G3/8	10	24,5	P1V-P023BB0012
0,191	4,6	396	628	785	873	6,67	G3/8	10	24,5	P1V-P023BB0009
0,191	3,7	500	785	981	1100	6,67	G3/8	10	24,5	P1V-P023BB0007

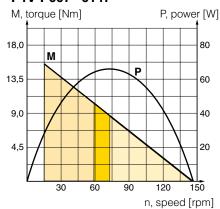
Dimensions, see page 31-32 Permitted shaft loadings, see page 37

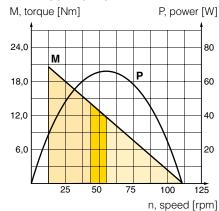
NOTE! All technical data are based on a working pressure of 5 bar and with oil. Speed tolerance accuracy is -+10%.



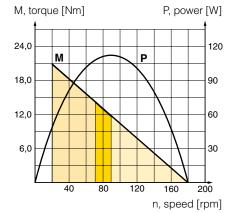
Data for reversible motor with gearbox, brake and foot bracket

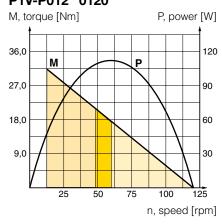

	Speed at max power	Torque at max power	Min start torque	Stall torque	Brake torque	Air consumption at max power	Conn.	Min pipe ID		Order code
kW	rpm	Nm	Nm	Nm	Nm	l/s		mm	Kg	
0,110	180	5,88	8,83	12,7	14,7	4,34	G1/4	10	8,5	P1V-P012FB0360
0,110	90	11,8	17,7	26,5	29,4	4,34	G1/4	10	8,5	P1V-P012FB0180
0,110	60	17,7	26,5	39,2	44,1	4,34	G1/4	10	8,5	P1V-P012FB0120
0,110	45	23,5	35,3	53,0	58,8	4,34	G1/4	10	8,5	P1V-P012FB0090
0,110	30	35,3	53,0	78,5	88,3	4,34	G1/4	10	10,5	P1V-P012FB0060
0,110	22,5	47,1	70,6	106	118	4,34	G1/4	10	10,5	P1V-P012FB0050
0,110	18	58,8	79,4	132	147	4,34	G1/4	10	10,5	P1V-P012FB0040
0,110	15	70,6	106	157	177	4,34	G1/4	10	10,5	P1V-P012FB0030
0,110	11,2	93,2	139	206	235	4,34	G1/4	10	10,5	P1V-P012FB0022
0,103	9	118	175	250	283	4,34	G1/4	10	13,5	P1V-P012FB0018
0,103	7,5	137	206	300	339	4,34	G1/4	10	13,5	P1V-P012FB0015
0,103	5,6	176	261	373	453	4,34	G1/4	10	13,5	P1V-P012FB0012
0,103	4,5	233	350	500	567	4,34	G1/4	10	13,5	P1V-P012FB0009
0,199	150	12,7	20,6	26,5	29,4	6,67	G3/8	10	13,0	P1V-P023FB0300
0,199	75	26,5	41,2	53,0	58,8	6,67	G3/8	10	13,0	P1V-P023FB0150
0,199	50	39,2	61,8	79,4	88,3	6,67	G3/8	10	13,0	P1V-P023FB0100
0,199	37,5	53,0	82,4	106	118	6,67	G3/8	10	13,0	P1V-P023FB0075
0,199	25	78,5	124	159	177	6,67	G3/8	10	16,5	P1V-P023FB0050
0,199	18,7	106	165	212	235	6,67	G3/8	10	16,5	P1V-P023FB0038
0,199	15	132	206	265	294	6,67	G3/8	10	16,5	P1V-P023FB0030
0,199	12,5	157	247	318	353	6,67	G3/8	10	16,5	P1V-P023FB0025
0,199	9,3	203	314	402	471	6,67	G3/8	10	16,5	P1V-P023FB0018
0,191	7,5	250	392	490	549	6,67	G3/8	10	24,0	P1V-P023FB0015
0,191	6,2	300	471	598	657	6,67	G3/8	10	24,0	P1V-P023FB0012
0,191	4,6	396	628	785	873	6,67	G3/8	10	24,0	P1V-P023FB0009
0,191	3,7	500	785	981	1100	6,67	G3/8	10	24,0	P1V-P023FB0007

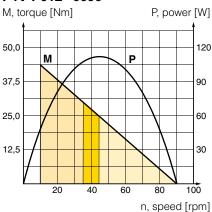

P1V-P007**0440

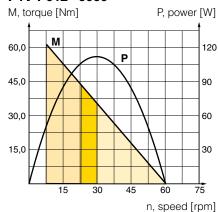

P1V-P007**0220

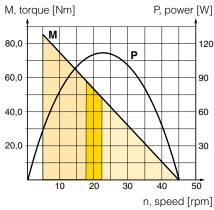
P1V-P007**0147


P1V-P007**0110


P1V-P012**0360

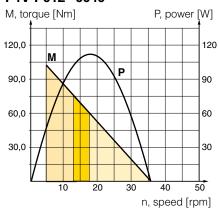

P1V-P012**0180


P1V-P012**0120

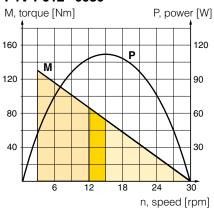

P1V-P012**0090

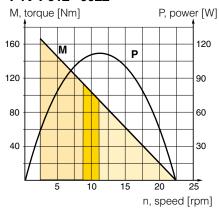
P1V-P012**0060

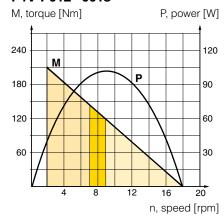
P1V-P012**0050

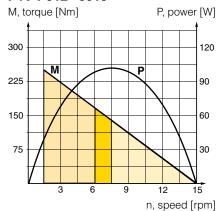

Possible working range of motor.

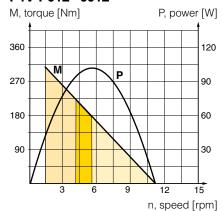
Optimum working range of motor.

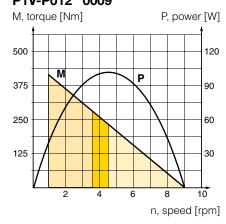

Working range with shorter service life.

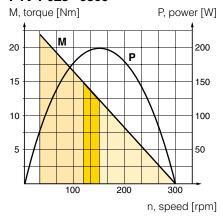

P1V-P012**0040

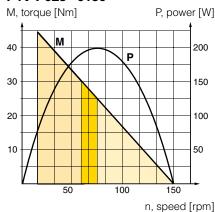

P1V-P012**0030

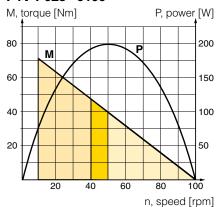

P1V-P012**0022


P1V-P012**0018


P1V-P012**0015

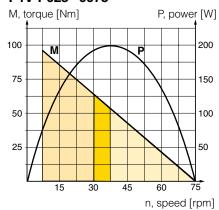

P1V-P012**0012


P1V-P012**0009

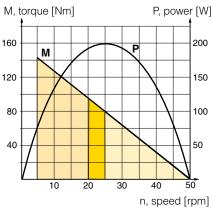

P1V-P023**0300

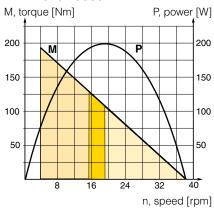
P1V-P023**0150

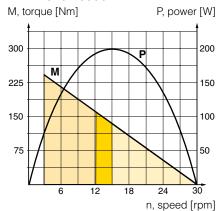
P1V-P023**0100

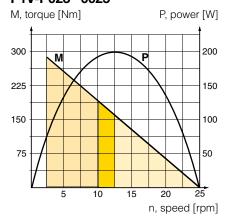

Possible working range of motor.

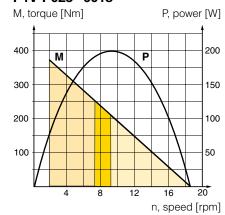
Optimum working range of motor.

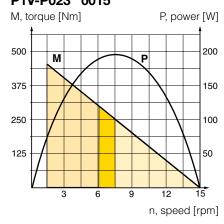

Working range with shorter service life.


P1V-P023**0075

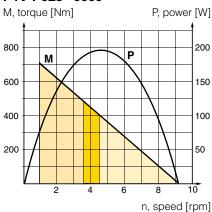

P1V-P023**0050

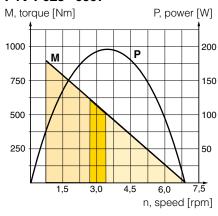

P1V-P023**0038


P1V-P023**0030


P1V-P023**0025

P1V-P023**0018


P1V-P023**0015


P1V-P023**0012

P1V-P023**0009

P1V-P023**0007

Possible working range of motor.

Optimum working range of motor.

Working range with shorter service life.

Permitted shaft loadings

Max. permitted load on output shaft for motors according to tables below.

Basic motors - also with brake

Motor	Radial load [N]	Axial load [N]
P1V-P007**2200	98	59
P1V-P012**1800	137	98
P1V-P023**1500	196	137

**

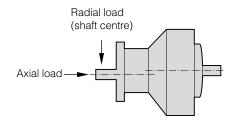
A0 = Basic motor

B0 = Basic motor with flange F0 = Basic motor with foot AB = Basic motor - with brake

BB = Basic motor with flange - with brake FB = Basic motor with foot - with brake

Motors with gearboxes and mountings - also with brake

Motor	Radial load [N]	Axial load [N]
P1V-P007**0440	245	147
P1V-P007**0220	539	245
P1V-P007**0147	785	343
P1V-P007**0110	1080	441
P1V-P012**0360	392	245
P1V-P012**0180	785	343
P1V-P012**0120	1080	539
P1V-P012**0090	1370	686
P1V-P012**0060	2160	1130
P1V-P012**0050	2260	1230
P1V-P012**0040	2350	1320
P1V-P012**0030	2450	1370
P1V-P012**0022	1550	1470
P1V-P012**0018	4610	2260
P1V-P012**0015	4710	2550
P1V-P012**0012	5000	2840
P1V-P012**0009	5100	3140
P1V-P023**0300	490	294
P1V-P023**0150	981	441
P1V-P023**0100	1370	637
P1V-P023**0075	1770	834
P1V-P023**0050	3970	1420
P1V-P023**0038	4170	1570
P1V-P023**0030	4320	1670
P1V-P023**0025	4410	1810
P1V-P023**0018	4510	1960
P1V-P023**0015	6470	2550
P1V-P023**0012	6620	2750
P1V-P023**0009	6910	2940
P1V-P023**0007	7060	3140

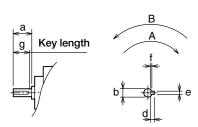

**

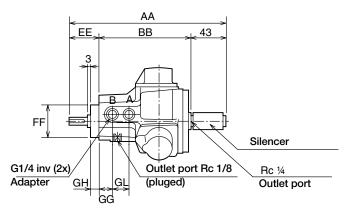
För P1V-P007, P1V-P012 and P1V-P023

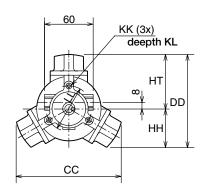
B0 = Motor with gearbox and flange **F0** = Motor with gearbox and foot

För P1V-P012 and P1V-P023

BB = Motor with gearbox and flange - with brake
FB = Motor with gearbox and foot - with brake

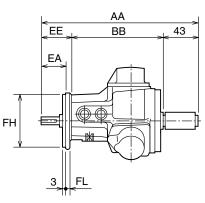


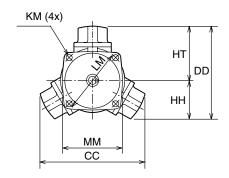

Reversible basic motor


P1V-P007A02200 P1V-P012A01800

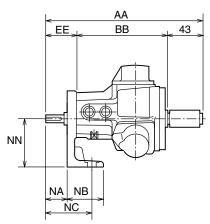
Shaft end for all basic motors

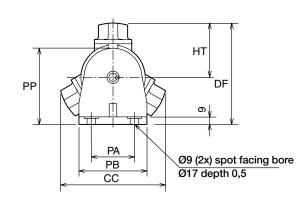
B port: Inlet for clockwise rotation A port: Inlet for counter clockwise rotation





Reversible basic motor with flange

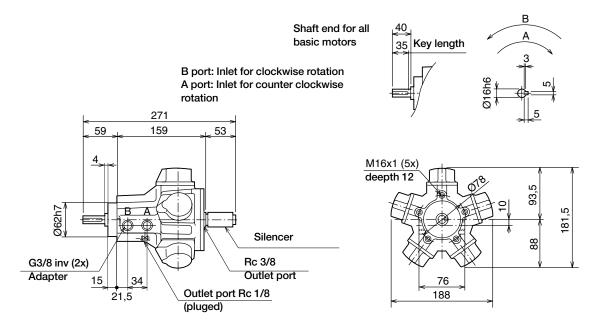

P1V-P007B02200 P1V-P012B01800



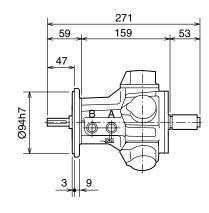
Reversible basic motor with foot bracket

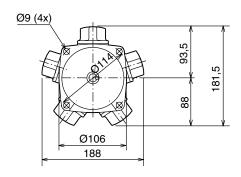
P1V-P007F02200 P1V-P012F01800

Dimensions (mm)

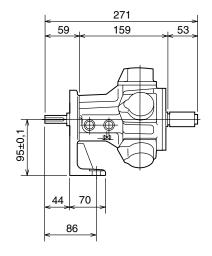

Motor	AA BB	СС	DD	DF	EA	EE	FF	FH	FL	GG	GH	GL	нн	нт	KK	KL	KM
P1V-P007*02200	192 113	130	115	127	29	36	Ø42 h7	Ø68h7	5	17	10	20	48	67	M5x0,8	8	Ø6
P1V-P012*01800	225 137	164	142	152	36	45	Ø48 h7	Ø78h7	7	19	12	28	60	82	M6x1	12	Ø7

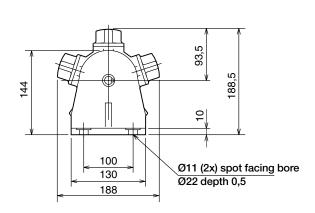
											s	haft end					
Motor	LL	LM	MM	NA	NB	NC	NN	PA	PB	PP	а	b	d	е	f	g	
P1V-P007*02200	Ø55	Ø80	72	26	45	56	60+/-0,1	50	80	94	23	Ø10h6	3	3	1,8	20	
P1V-P012*01800	Ø62	Ø92	86	33	50	63	70+/-0,1	70	100	110	30	Ø12h6	4	4	2,5	27	


Reversible basic motor


P1V-P023A01500

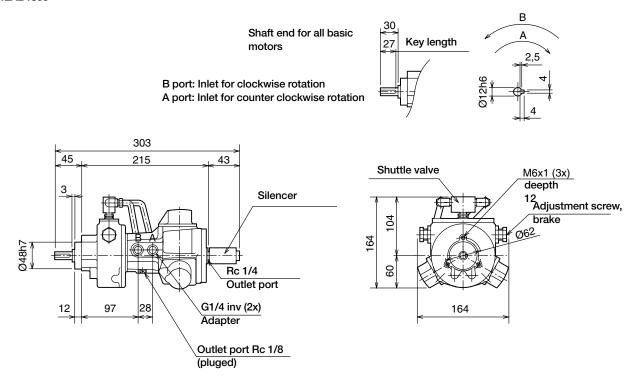
Reversible basic motor with flange

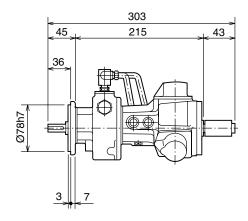

P1V-P023B01500

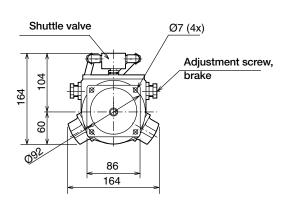


Reversible basic motor with foot bracket

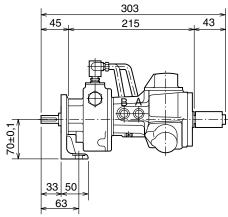
P1V-P023F01500

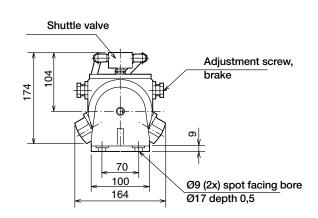



Reversible basic motor with brake


P1V-P012AB1800

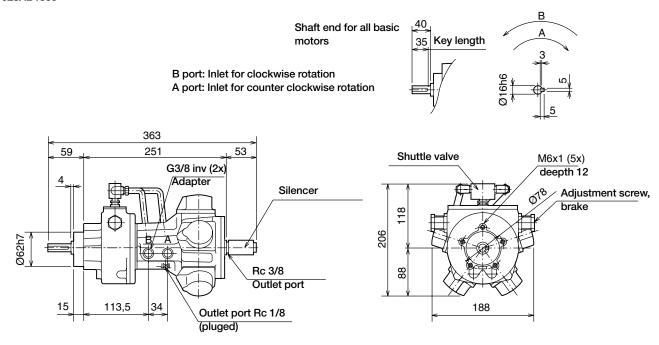
Reversible basic motor with brake and flange

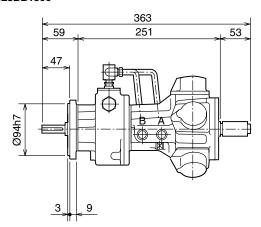

P1V-P012BB1800

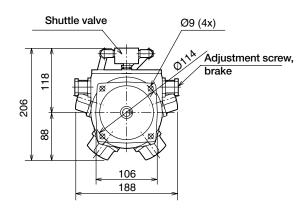


Reversible basic motor with brake and foot bracket

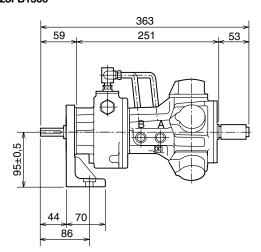
P1V-P012FB1800

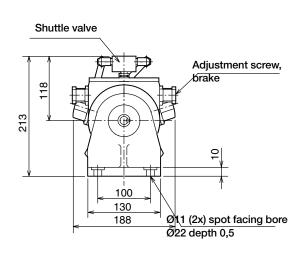



Reversible basic motor with brake


P1V-P023AB1500

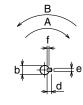
Reversible basic motor with brake and flange

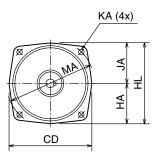

P1V-P023BB1500



Reversible basic motor with brake and foot bracket

P1V-P023FB1500



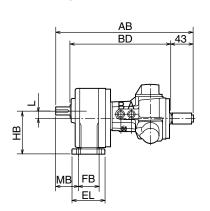

Reversible motor with gearbox and flange

P1V-P007B00440 B port: Inlet for clockwise rotation P1V-P007B00220 A port: Inlet for counter clockwise rotation P1V-P007B00147 Key length Valid for P1V-P007B00110 P1V-P007*00440 В P1V-P007*00220 P1V-P012B00360 f P1V-P007*00147 P1V-P007*00110 P1V-P012*00360 P1V-P012*00180 P1V-P012B00180 P1V-P012B00120 P1V-P012B00090 P1V-P012*00120 d P1V-P012*00090 P1V-P012B00060 AΒ P1V-P012*00060 43 BC P1V-P012B00050 P1V-P012*00050 = B or F GA G1/4 inv (2x) P1V-P012B00040 Silencer FΑ P1V-P012B00030 Adapter P1V-P012B00022 P1V-P012B00018 P1V-P012B00015 P1V-P012B00012 P1V-P012B00009 Rc 1/4 Outlet port GT Outlet port Rc 1/8 ĠĽ (pluged)

A port: Inlet for clockwise rotation
B port: Inlet for counter clockwise rotation

Valid for P1V-P012*00040 P1V-P012*00030 P1V-P012*00012 P1V-P012*00018 P1V-P012*00015 P1V-P012*000012 P1V-P012*00009 * = B or F

Reversible motor with gearbox and foot bracket

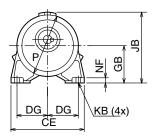

360

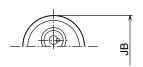
257 262

P1V-P007F00440 P1V-P007F00220 P1V-P007F00147 P1V-P007F00110 P1V-P012F00360 P1V-P012F00180 P1V-P012F00120 P1V-P012F00090 P1V-P012F00060 P1V-P012F00050 P1V-P012F00040 P1V-P012F00030 P1V-P012F00022 P1V-P012F00018 P1V-P012F00015 P1V-P012F00012 P1V-P012F00009

Dimensions (mm)

P1V-P012*00012 P1V-P012*00009




Valid for P1V-P012F00018 P1V-P012F00015 P1V-P012F00012 P1V-P012F00009

60 168

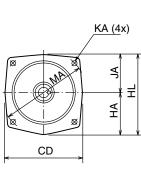
4 130

15 101,5

Motor BC BD CD CE DE DG EG EL FA GA GB HL AB FB GL GT HA HB P1V-P007*00440 P1V-P007*00220 P1V-P007*00147 P1V-P007*00110 194 199 154 134 Ø145 h7 55 35 64 3 40 10 68,5 20 98 0.08 85 157,0 P1V-P012*00360 P1V-P012*00180 P1V-P012*00120 P1V-P012*00090 47 323 233 240 164 154 Ø148 h7 65 90 4 65 12 71,0 28 115 89.0 90 171,5 P1V-P012*00060 P1V-P012*00050 P1V-P012*00040 P1V-P012*00030 P1V-P012*00022 340 247 252 175 Ø170 h7 70 50 125 90 15 86,5 28 128 105,5 110 199,0 186 P1V-P012*00018 P1V-P012*00015

215 208 Ø180 h7 85

										S	haft end					
Motor	JA	JB	KA	KB	L	MA	MB	NF	Р	а	b	d	е	f	g	
P1V-P007*00440 P1V-P007*00220 P1V-P007*00147 P1V-P007*00110	77 O	135.5	Ø11	Ø9	16.5	Ø170	45	10	Ø112	30	Ø18h6	6	6	3.5	27	
P1V-P012*00360 P1V-P012*00180 P1V-P012*00120 P1V-P012*00090	,	,	Ø11	Ø11	-,-	Ø185	55	12	Ø125	40	Ø22h6	6	6	3,5	35	
P1V-P012*00060 P1V-P012*00050 P1V-P012*00040 P1V-P012*00030			2 4	2 4					 .							
P1V-P012*00022 P1V-P012*00018 P1V-P012*00015	94,0	169,0	Ø11	Ø11	23,5	Ø215	65	15	Ø152	45	Ø28h6	7	8	4	40	
P1V-P012*00012 P1V-P012*00009	107,5	198,0	Ø13	Ø13	28,5	Ø250	70	18	Ø184	55	Ø32h6	8	10	5	50	



28 139 126,5 130 234,0

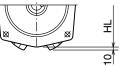
Reversible motor with gearbox and flange

P1V-P023B00300 B port: Inlet for clockwise rotation A port: Inlet for clockwise rotation A port: Inlet for counter clockwise rotation B port: Inlet for counter clockwise rotation P1V-P023B00150 P1V-P023B00100 Key length Valid for P1V-P023B00075 P1V-P023*00300 P1V-P023*00150 P1V-P023*00100 P1V-P023B00050 P1V-P023B00038 P1V-P023*00075 P1V-P023*00050 P1V-P023B00030 P1V-P023*00038 P1V-P023B00025 = B or F AB P1V-P023B00018 ĒĢ 53 BC P1V-P023B00015 P1V-P023B00012 FA GΑ Silencer G3/8 inv (2x) P1V-P023B00009 Adapter P1V-P023B00007 R Rc 3/8 Outlet port Outlet port Rc 1/8 GT 34

(pluged)

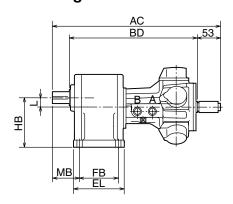
Valid for

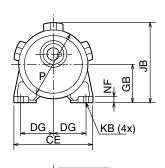
P1V-P023*00030 P1V-P023*00025 P1V-P023*00018


P1V-P023*00015

P1V-P023*00012

P1V-P023*00009


P1V-P023*00007 = B or F


Valid for P1V-P023B00300 P1V-P023B00150 P1V-P023B00100 P1V-P023B00075

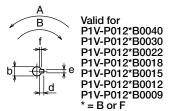
Reversible motor with gearbox and foot bracket

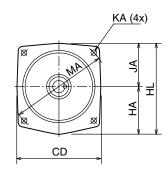
P1V-P023F00300 P1V-P023F00150 P1V-P023F00100 P1V-P023F00075 P1V-P023F00050 P1V-P023F00038 P1V-P023F00030 P1V-P023F00025 P1V-P023F00018 P1V-P023F00015 P1V-P023F00012 P1V-P023F00009 P1V-P023F00007

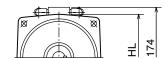
Valid for P1V-P023F00015 P1V-P023F00012 P1V-P023F00009 P1V-P023F00007

Dimensions (mm)

Motor	AB	AC	вс	BD	CD	CE	DE	DG	EG	EL	FA	FB	GA	GB	GT	НА	НВ	HL	
P1V-P023*00300 P1V-P023*00150 P1V-P023*00100 P1V-P023*00075	374	_	271	276	186	175	Ø170h7	70	50	125	4	90	15	86,5	133	105,5	110	198,5	
P1V-P023*00050 P1V-P023*00038 P1V-P023*00030 P1V-P023*00025 P1V-P023*00018	403	_	290	295	215	208	Ø180h7	85	60	168	4	130	15	101,5	152	126,5	130 2	234,0	
P1V-P023*00015 P1V-P023*00012 P1V-P023*00009 P1V-P023*00007	431	428	307	310	270	254	Ø230h7	105	71	196	5	150	18	116,0	170	149,0	150 2	284,0	

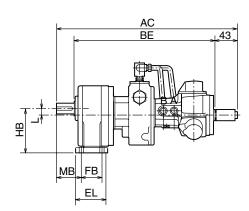

										S	haft end					
Motor	JA	JB	KA	KB	L	MA	MB	NF	Р	а	b	d	е	f	g	
P1V-P023*00300 P1V-P023*00150																
P1V-P023*00100 P1V-P023*00075	93,0	180,0	Ø11	Ø11	23,5 Ø	0215	65	15 Ø1	52	45	Ø28h6	7	8	4	40	
P1V-P023*00050 P1V-P023*00038																
P1V-P023*00030 P1V-P023*00025																
P1V-P023*00018	107,5	198,0	Ø13	Ø13	28,5 Ø	Ø250	70	18 Ø1	84	55	Ø32h6	8	10	5	50	
P1V-P023*00015 P1V-P023*00012																
P1V-P023*00009 P1V-P023*00007	135,0	230,0	Ø18	Ø15	23,5 Ø	0 3310	90	20 Ø2	18	65	Ø40h6	8	12	5	60	

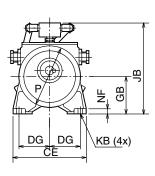



Reversible motor with gearbox, brake and flange

P1V-P012BB0360 B port: Inlet for clockwise rotation A port: Inlet for counter clockwise rotation P1V-P012BB0180 Key length P1V-P012BB0120 Valid for P1V-P012*B0360 P1V-P012BB0090 P1V-P012*B0180 P1V-P012BB0060 P1V-P012*B0120 P1V-P012*B0090 P1V-P012*B0060 P1V-P012BB0050 P1V-P012BB0040 P1V-P012*B0050 P1V-P012BB0030 = B or F P1V-P012BB0022 AC EG _{_}43^{*} BD P1V-P012BB0018 P1V-P012BB0015 GΑ G1/4 inv (2x) Silencer P1V-P012BB0012 Adapter P1V-P012BB0009 Rc 1/4 Outlet port GS Outlet port Rc 1/8 (pluged)

A port: Inlet for clockwise rotation B port: Inlet for counter clockwise rotation



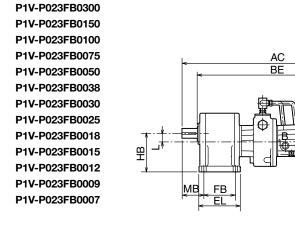


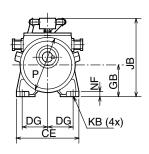
Reversible motor with gearbox, brake and foot bracket

P1V-P012FB0360 P1V-P012FB0180 P1V-P012FB0120 P1V-P012FB0090 P1V-P012FB0060 P1V-P012FB0050 P1V-P012FB0030 P1V-P012FB0030 P1V-P012FB0018 P1V-P012FB0015 P1V-P012FB0012 P1V-P012FB0019

Dimensions (mm)

Motor	AC	BD	BE	CD	CE	DE	DG	EG	EL	FB	GA	GB	GS	HA	НВ	HL	
P1V-P012*B0360 P1V-P012*B0180 P1V-P012*B0120 P1V-P012*B0090		311	318	164	154	Ø148h7	65	47	90	65	12	71,0	193	89,0	90 1	74,0	
P1V-P012*B0060 P1V-P012*B0050 P1V-P012*B0040 P1V-P012*B0030 P1V-P012*B0022		324	329	186	175	Ø170h7	70	50	125	90	15	86,5	206	105,5	110 1	98,5	
P1V-P012*B0018 P1V-P012*B0015 P1V-P012*B0012 P1V-P012*B0009		335	340	215	208	Ø180h7	85	60	168	130	15	101,5	217	126,5	130 2	34,0	


Shaft end														
Motor	JA	JB	KA	KB	L M	A MB	NF	P	а	b	d	е	f	g
P1V-P012*B0360 P1V-P012*B0180														
P1V-P012*B0120 P1V-P012*B0090	82,5	175	Ø11	Ø11	19,0 Ø1	35 55	12 Ø	125	40	Ø22H6	45	Ø28h6	7	8
P1V-P012*B0060 P1V-P012*B0050														
P1V-P012*B0040 P1V-P012*B0030														
P1V-P012*B0022	93,0	191	Ø11	Ø11	23,5 Ø2	15 65	15 Ø	152	45	Ø28H6	55	Ø32h6	8	10
P1V-P012*B0018 P1V-P012*B0015														
P1V-P012*B0012 P1V-P012*B0009	107,5	206	Ø13	Ø13	28,5 Ø2	50 70	18 Ø	184	55	Ø32H6	65	Ø40h6	8	12



Reversible motor with gearbox, brake and flange

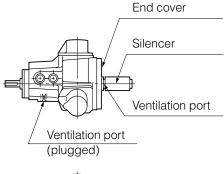
Reversible motor with gearbox, brake and foot bracket

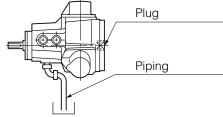
Dimensions (mm)

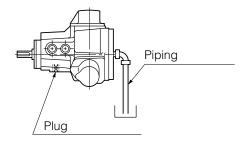
P1V-P023*B0300 P1V-P023*B0150 P1V-P023*B0100 P1V-P023*B0075 466 363 368 186 175 Ø170h7 70 50 125 4 90 15 86,5 225 105,5 110 198 P1V-P023*B0050 P1V-P023*B0038 P1V-P023*B0030 P1V-P023*B0025 P1V-P023*B0018 495 382 387 215 208 Ø180h7 85 60 168 4 130 15 101,5 244 126,5 130 234 P1V-P023*B0015 P1V-P023*B0012 P1V-P023*B0009 P1V-P023*B0007 520 396 402 270 254 Ø230h7 105 71 196 5 150 18 116,0 259 149,0 150 284	Motor	AC	BD	BE	CD	CE	DE	DG	EG	EL	FA	FB	GA	GB	GS	НА	НВ	HL
P1V-P023*B0030 P1V-P023*B0025 P1V-P023*B0018 495 382 387 215 208 Ø180h7 85 60 168 4 130 15 101,5 244 126,5 130 234 P1V-P023*B0015 P1V-P023*B0012 P1V-P023*B0009 P1V-P023*B0007 520 396 402 270 254 Ø230h7 105 71 196 5 150 18 116,0 259 149,0 150 284		466	363	368	186	175	Ø170h7	70	50	125	4	90	15	86,5	225	105,5	110	198,5
P1V-P023*B0015 P1V-P023*B0012 P1V-P023*B0009 P1V-P023*B0007 520 396 402 270 254 Ø230h7 105 71 196 5 150 18 116,0 259 149,0 150 284	P1V-P023*B0030 P1V-P023*B0025	495	382	387	215	208	Ø180h7	85	60	168	4	130	15	101 5	244	126.5	130	234 0
Shaft end	P1V-P023*B0015 P1V-P023*B0012															- , -		- ,-
Motor JA JB KA KB L MA MB NF P a b d e f g	Motor	.۱۵	JB	ı K	ΔΚ	R	I MA	MR	NF	D					_	f	_	

53

P1V-P023*B0300 P1V-P023*B0150 P1V-P023*B0100 P1V-P023*B0075 493,0 205 Ø11 Ø11 23,5 Ø215 65 15 Ø152 45 Ø28H6 8 40 P1V-P023*B0050 P1V-P023*B0038 P1V-P023*B0030 P1V-P023*B0025 P1V-P023*B0018 107.5 220 Ø13 Ø13 28.5 Ø250 70 18 Ø184 55 Ø32H6 8 10 5 50 P1V-P023*B0015 P1V-P023*B0012 P1V-P023*B0009 P1V-P023*B0007 135,0 Ø15 34,0 Ø310 20 Ø218 Ø40H6 60


Installation instructions


Mounting


P1V-P Air Motors can be built-in in all positions. It is important to get the output spindle in centre to the driven part to avoid unnecessary axial or side load on the motor. Axial couplings are recommended to be used between the motor and the driven part to get the longest possible service life on the P1V-P Motor.

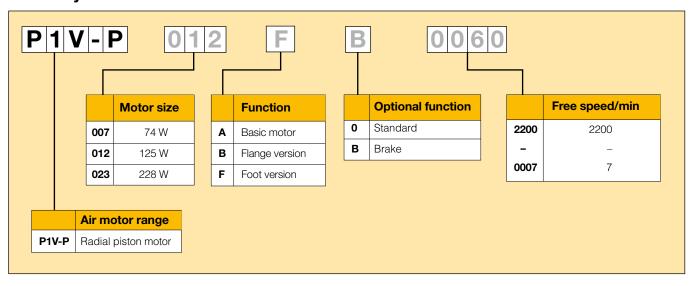
Ventilation port

- Ventilation port is to remove air pressure in the Air Motor.
 It shall always be kept open. If it is plugged will the internal
 pressure in the motor increase, resulting in reduction of the
 output power. Further, a trouble of come-off of the end
 cover will be caused.
- When delivered the silencer is not mounted on the ventilation port. It has to be assembled before start of the motor.
- When the motor is running can dirty and/or air with oil mist come out of the ventilation port. To avoid it to come out in the air in the surroundings creating environmental problems will it be necessary to take it away to one dirt/oil exhaust filter

Piping

- The pneumatic equipment (filter, regulator, lubricator, directional control valve, speed control valves....) has to be mounted as closed as possible to the P1V-P motor.
- Trouble of pneumatic equipment is mainly caused by foreign matters included dust, chips, scrap of tape seal, rust etc. Before piping, the piping shall be cleaned with compressed.
- For piping bore and pneumatic equipment (filter, regulator, directional control valve etc.) bore corresponding to the air consumption of the air motor has to be used to avoid pressure drop in the inlet port of the motor. When pipe or pneumatic equipment with smaller bore are used will the inlet pressure of the motor be too low and the performance will decrease. Piping with larger bores than the port connection is preferred.
- Clean, dry and lubricated compressed air ahs to be used (see the chapter "Compressed air quality on page 10)
- Use one as effective silencer as possible on the exhaust air. One silencer/oil absorption filer is preferred.
- All components on the exhaust side has to be enough large to avoid backpressure to the motor. Backpressure will reduce the output performance of the motor.
- Be sure to use one motor with the right speed for the application. The motor ahs to work with a speed of 20 – 50% of the free speed. A lower speed will not give a stabile function and a higher speed will increase the internal wear.

Lubrication


- P1V-P has to be supplied with lubricated compressed air.
- · Oil for air tools type VG32 has to be used.
- 2 3 drops/minute from the lubricator gives the right amount of oil

Note!

Insufficient lubrication will cause troubles such as shortening of life and seizure of rotary valve, piston and sleeve. Mount an air lubricator as close to the motor as possible.

Order key

Note: This model code can not be used for creating new part numbers. All possible combinations between motor size, function and free speed are in all previous pages except optional function.

Possible combinations

Data for:

Reversible basic motor with flange Reversible basic motor with foot bracket

Reversible basic motor with brake Reversible basic motor with brake and flange Reversible basic motor with brake and foot bracket

Reversible motor with gearbox and flange Reversible motor with gearbox and foot bracket

Reversible motor with gearbox, brake and flange Reversible motor with gearbox, brake and foot bracket

Parker Worldwide

Europe, Middle East, Africa

AE - United Arab Emirates,

Tel: +971 4 8127100 parker.me@parker.com

AT - Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT - Eastern Europe, Wiener Neustadt

Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ - Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU - Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BY - Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CH - Switzerland, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ - Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE - Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI - Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR - France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com

HU - Hungary, Budapest Tel: +36 1 220 4155 parker.hungary@parker.com IE - Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT - Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ - Kazakhstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

NL - The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO - Norway, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL - Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT - Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO - Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE - Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK - Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL - Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR - Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA - Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK - United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

ZA - South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

North America

CA - Canada, Milton, Ontario Tel: +1 905 693 3000

US - USA, Cleveland Tel: +1 216 896 3000

Asia Pacific

AU - Australia, Castle Hill Tel: +61 (0)2-9634 7777

CN - China, Shanghai Tel: +86 21 2899 5000

HK - Hong Kong Tel: +852 2428 8008

IN - India. Mumbai Tel: +91 22 6513 7081-85

JP - Japan, Tokyo Tel: +81 (0)3 6408 3901

KR - South Korea, Seoul Tel: +82 2 559 0400

MY - Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ - New Zealand, Mt Wellington

Tel: +64 9 574 1744

SG - Singapore Tel: +65 6887 6300

TH - Thailand, Bangkok Tel: +662 186 7000

TW - Taiwan, Taipei Tel: +886 2 2298 8987

South America

AR - Argentina, Buenos Aires Tel: +54 3327 44 4129

BR - Brazil, Sao Jose dos Campos Tel: +55 800 727 5374

CL - Chile, Santiago Tel: +56 2 623 1216

MX - Mexico, Apodaca Tel: +52 81 8156 6000

European Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

© 2014 Parker Hannifin Corporation. All rights reserved.

Parker Hannifin Ltd.

Tachbrook Park Drive Tachbrook Park, Warwick, CV34 6TU United Kingdom

Tel.: +44 (0) 1926 317 878 Fax: +44 (0) 1926 317 855 parker.uk@parker.com www.parker.com

Catalogue PDE2538TCUK - V2 - November 2014

Your local authorized Parker distributor

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Air Motors

P1V-S, stainless steel type - 0.02 to 1.2 kW

P1V-S, high torque type - 0.28, 0.57 & 0.86 kW

P1V-S, drilling, milling & grinding types - 0.08 to 1 kW

Catalogue PDE2554TCUK February 2015

Features	Air motor	Hydraulic motor	Electric motor	Electric motor regulated	Electric motor regulated with feed back
Overload safe	***	***	*	**	***
Increased torque at higher loads	***	**	*	**	***
Easy to limit torque	***	***	*	*	***
Easy to vary speed	***	***	*	***	***
Easy to limit power	***	***	*	**	***
Reliability	***	***	***	***	***
Robustness	***	***	*	*	*
Installation cost	***	*	**	**	**
Ease of service	***	**	*	*	*
Safety in damp environments	***	***	*	*	*
Safety in explosive atmospheres	***	***	*	*	*
Safety risk with electrical installations	***	***	*	*	*
Risk of oil leak	***	*	***	***	***
Hydraulic system required	***	*	***	***	***
Weight	**	***	*	**	*
Power density	**	***	*	*	*
High torque for size	**	***	*	*	*
Noise level during operation	*	***	**	**	**
Total energy consumption	*	**	***	***	***
Service interval	*	**	***	***	***
Compressor capacity required	*	***	***	***	***
Purchase price	*	*	***	***	**
Accuracy, speed	*	**	*	**	***
Regulating dynamic	*	*	*	*	***
Communication	*	*	*	***	***

^{* =} good, **=average, ***=excellent

Important

Before carrying out service activities, make sure the air motor is vented. Before disassembling the motor, disconnect the primary air hose to ensure that the air supply is interrupted.

Note

All technical data in the catalogue are typical

The air quality is a major factor in the service life of the motor, see ISO 8573-1.

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR STSTEMS DESCRIBED FIGURE OF THE PRODUCT SAND/OR STSTEMS DESCRIBED FIGURE OF THE PRODUCT SAND STSTEMS DESCRIBED FIGURE OF THE PRODUCT SAND STSTEMS DESCRIBED FIGURE OF THE PRODUCT SAND STSTEMS THE PRODUCT SAND ST

SALE CONDITIONS

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered into by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

Contents	Page
The steps to size	5 6 - 8 9
Stainless Steel Air Motors P1V-S	13 - 35
Stainless Steel Air Motors with brakes P1V-S	36 - 45
High Torque Stainless Steel Air Motors P1V-S	47 - 55
Mountings Lubrication and service life Service kits Introduction to the ATEX directive	57 58 - 59
Drilling, Grinding & Milling Steel Air Motors P1V-S	65 - 81
Lubrication and service life	82

Choosing the correct air motor for your application

1 Which drive principle of the air motor is suitable for your application?

- Air vane motor are suitable for regular operating cycles, speed is very small e.g. 16 rpm
- Tooth gear air motor or turbines are more suitable for continuous operation, 24 hours non-stop, speed is in a upper range, up to 140,000 rpm
- Oil free operation is often an option for these three principles of air motors.

Which motor materials are suitable for your application?

- Will the air motor work in a normal production area
- Or in a paper industry
- Or in the food processing industry, in contact or not with food
- Or in underwater usage
- Or in the medical, pharmaceutical industries
- Or in potentially explosive areas
- Others, please describe your environment

How do you calculate the motor power taking the application conditions into consideration?

- 1. Which rotational direction? Clockwise, anti-clockwise, reversible?
- 2. Air pressure working range? Which air class quality is available?
- 3. Which torque and which speed under load do you expect to obtain?
- 4. Calculate the basic power with the formula

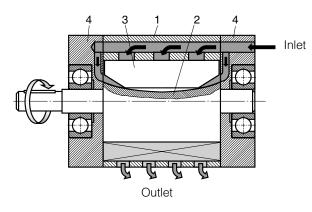
P = M x n / 9550 with P power output in kW, M nominal torque in Nm, n nominal speed in rpm

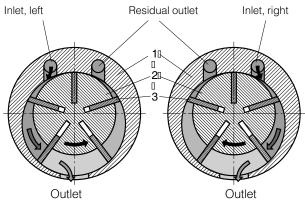
- 5. Check performance data of air motors in our catalogues. Note that all data is at 6 bar in the inlet of the air motor, max 3 meters for tubes and oil lubricated operations.
- 6. To adapt the difference of air pressure with your operation conditions, please check graphs in our catalogues and how to do it.
- 7. or you can adapt the need of air to fit your operation conditions by throttling the outlet flow in the air motor you will reduce speed without loss of torque.
- 8. Check if you need an oil free or not working operation. 1 to 2 drops of oil per cube meter are needed to optimize performance and life time of air motors. Oil free operation will decrease by 10 to 15% the performance of air motors.

4 How do you integrate your air motor in your system?

- In which position is the air motor used?
- Do you need to use a brake?
- Do you want to use your own gear box and put it somewhere else in the machine?
- Do you need extra components like fittings, tubes, valves and FRLs?

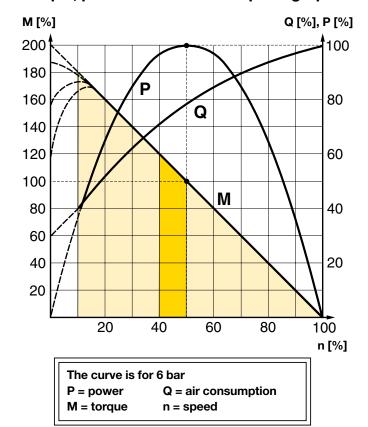
6 How do you ensure a long life and high performance of the air motor?


- Ensure you air quality is in accordance with our specifications, oil or oil free lubrication operations.
- Keep the recommended maintenance intervals


6 How do you determine the purchasing and running costs after the air motor installation?

- Keep same level of your air quality.

Principles of motor functioning



- 1 Rotor cylinder
- 2 Rotor
- 3 Vanes
- 4 End piece with bearing

There are a number of designs of air motors. Parker has chosen to use the vane rotor design, because of its simple design and reliable operation. The small external dimensions of vane motors make them suitable for all applications. The principle of the vane motor is that a rotor with a number of vanes is enclosed in a rotor cylinder. The motor is supplied with compressed air through one connection and air escapes from the other connection. To give reliable starting, the springs press the vanes against the rotor cylinder. The air pressure always bears at right angles against a surface. This means that the torque of the motor is a result of the vane surfaces and the air pressure.

Torque, power and air consumption graphs

Possible working range of motor.

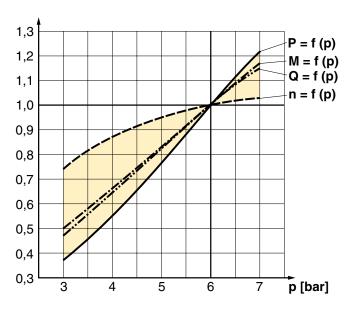
Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear

The performance characteristics of each motor are shown in a family of curves as above, from which torque, power and air consumption can be read off as a function of speed. Power is zero when the motor is stationary and also when running at free speed (100%) with no load. Maximum power (100%) is normally developed when the motor is driving a load at approximately half the free speed (50%).

Torque at free speed is zero, but increases as soon as a load is applied, rising linearly until the motor stalls. As the motor can then stop with the vanes in various positions, it is not possible to specify an exact torque. However, a minimum starting torque is shown in all tables.

Air consumption is greatest at free speed, and decreases with decreasing speed, as shown in the above diagram.

Introduction

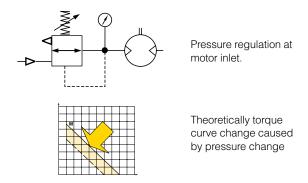

The performance of an air motor is dependent on the inlet pressure. At a constant inlet pressure, air motors exhibit the characteristic linear output torque / speed relationship. However, by simply regulating the air supply, using the techniques of throttling or pressure regulation, the output of an air motor can easily be modified. The most economical operation of an air motor (least wear, least air consumption, etc.) is reached by running close to nominal speed. By torque of M=0, the maximum speed (idle speed) is reached. Shortly before standstill (n - 0), the air motor reaches its maximum torque (Mmax = 2 x Mo). At nominal speed (nn), for example in the middle of the speed range, air motor reaches its maximum power output (Pmax).

Energy Efficiency

A pneumatic motor achieves its maximum power when it is operating as close as possible to its rated speed (50% of the rated idle speed). The energy balance is best in this area, because the compressed air is used efficiently.

Air pressure correction factors

To adapt the difference of air pressure with your operation conditions

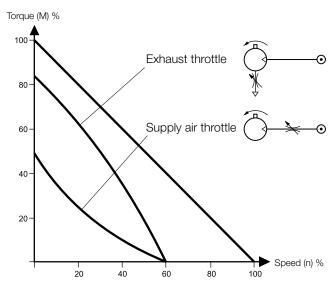

P = Power, M = Torque, Q = Air consumption, N = Speed

Pressure (p) bar / PSI	Power (P)	Speed (n) %	Torque (M) %	Air Consumpt. (Q)
7 / 99	121	103	117	117
6 / 85	100	100	100	100
5/71	77	95	83	83
4 / 57	55	87	67	67
3 / 42	37	74	50	50

All catalogue data and curves are specified at a supply pressure of 6 bar to the motor. This diagram shows the effect of pressure on speed, specified torque, power and air consumption. Start off on the curve at the pressure used and then look up to the lines for power, torque and air consumption. Read off the correction factor on the Y axis for each curve and multiply this by the specified catalogue data in the table, or data read from the torque and power graphs.

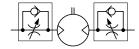
Example: at 4 bar supply pressure, the power is only 0.55 x power at 6 bar supply pressure. This example shows how strongly power falls if supply pressure is reduced. You must therefore ensure that the motor is supplied through pipes of sufficient diameter to avoid pressure drop.

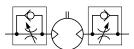
The speed and torque can also be regulated by installing a pressure regulator in the inlet pipe. This means that the motor is constantly supplied with air at lower pressure, which means that when the motor is braked, it develops a lower torque on the output shaft.



Speed regulation, air flow reduction

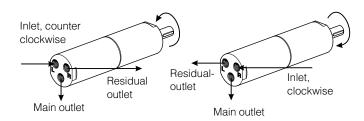
Every size reduction or restriction on the air line, whether of the supply hose itself or fittings, before the air motor affects the amount of the supplied air. By throttling you reduce the speed of your motor and simultaneously, the required torque. That means that you reduce the motor performance. The most common way to reduce the speed of a motor is to install a flow control valve in the air outlet, you can set the speed without loss of the torque. When the motor is used in applications where it must reverse and it is necessary to restrict the speed in both directions, flow control valves with by-pass should be used in both directions. If the inlet air is restricted, the air supply is restricted and the free speed of the motor falls, but there is full pressure on the vanes at low speeds. This means that we get full torque from the motor at low speeds despite the low air flow. Since the torque curve becomes "steeper". this also means that we get a lower torque at any given speed than would be developed at full air flow. The benefit of throttling the inlet is that air consumption is reduced, whereas throttling the exhaust air maintains a slightly higher starting torque.


P1V-S - Air Motors


Throttling

Supply or exhaust throttling, non-reversible motor

Supply throttling, reversible motor


Exhaust throttling, reversible motor

Theoretically torque curve change caused by throttling

Component choice for air supply

Direction of motor rotation

The direction of rotation of reversible motors is controlled by supplying inlet L or inlet R with compressed air. Air motors can be stopped and started continually without damage.

As the motor begins to rotate air is trapped between the vanes and is compressed. This air is exhausted through the exhaust port. As the rotor continues it's rotation, trapped air is compressed and exhausted through the residual port. If this air is not exhausted, the motor will be braked and maximum power will not be obtained.

Compressed air quality

Oil and oil mist are avoided whenever possible to ensure a clean work environment. In addition, purchasing, installation and maintenance of oil equipment can be expensive. All users in all industries now try to avoid using components which have to be lubricated. The P1V air motors series are equipped with vanes for intermittent lubrication free operation as standard, which is the most common application of air motors.

Dry unlubricated compressed air

If unlubricated compressed air is used, the compressed air should comply with the purity standards below in order to guarantee the longest possible overall service life. If the unlubricated compressed air has a high water content, condensation forms inside the motor, causing corrosion in all internal components. A ball bearing can be destroyed in a remarkably short time if it comes into contact with a single water droplet. For indoor use, we recommend ISO8573-1 purity class 3.4.1. To achieve this, compressors must befitted with after coolers, oil filters, refrigerant air dryers and air filters. For indoor/outdoor use, we recommend ISO8573-1 purity class 1.2.1. To achieve this, compressors must be fitted with after coolers, oil filters, adsorption dryers and dust filters.

Oil mist

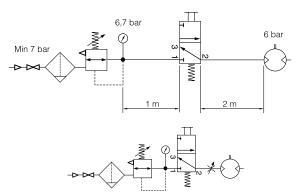
If oil mist is used (approx. 1 drop of oil per m³ of compressed air), the oil not only acts as a lubricant but also protects against corrosion. This means that compressed air with a certain water content may be used without causing corrosion problems inside the motor. ISO8573-1 purity class 3.-.5 may be used without difficulty. The following oils are recommended for use in the food stuffs industry: Shell Cassida Fluid HF 32 or Klüberoil 4 UH 1-32

ISO 8573-1 purity classes

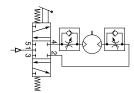
Quality class	Cor particle size (µm)	max. concentration (mg/m³)	Water max. pressure dew point (°C)	Oil max. concentration (mg.m³)
1	0.1	0.1	-70	0.01
2	1	1	-40	0.1
3	5	5	-20	1.0
4	15	8	+3	5.0
5	40	10	+7	25
6	-	-	+10	-

For example: compressed air to purity class 3.4.3. This means a 5 μ m filter (standard filter), dew point +3°C (refrigerant cooled) and an oil concentration of 1,0 mg oil/m³ (as supplied by a standard compressor with a standard filter).

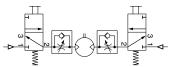
P1V-S - Air Motors


Air supply

Since the supply pressure at the air motor inlet port is of considerable importance for obtaining the power, speed and torque quoted in the catalogue, the recommendations below should be observed.


The following data must be complied with:

- Supply pressure: 7 bar
- Regulator pressure setting: 6.7 bar
- Pipe length between air treatment unit and valve: max. 1 m
- Pipe length valve and air motor: max 2 m


The pressure drop through the air preparation unit, pipe, valve means that 6 bar pressure is obtained at the motor supply port. Please refer to the correction diagram and factors to see what lower supply pressure means for power, speed and torque.

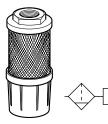
Shut-off, filtering, pressure regulation and control valve

Reversible motor with 5/3 control valve

Reversible motor with two 3/2 control valves

The air with which the motor is supplied must be filtered and regulated. Directional valves are needed to provide it with air, to get the motor to rotate when we want it to. These valves can be equipped with several means of actuation, such as electric, manual and pneumatic control. When the motor is used in a non-reversible application, it is sufficient to use a 2/2 or 3/2 valve function for supply. Either one 5/3 or two 3/2 valves functions are needed for a reversible motor, to ensure that the motor receives compressed air and the residual air outlet is vented. A flow control valve can be installed in the supply pipe to regulate the motor speed if the motor is not used as a reversible motor.

One flow control valve with by-pass is needed to regulate each direction of rotation if the motor is used as a reversible motor. The built-in check valve will then allow air from the residual air outlet to escape through the outlet port in the control valve. The compressed air supply must have sufficiently large pipes and valves to give the motor the maximum power. The motor needs 6 bar at the supply port all the time. For example, a reduction of pressure to 5 bar reduces the power developed to 77% and to 55% at 4 bar!


Silencing

Exhaust silencer

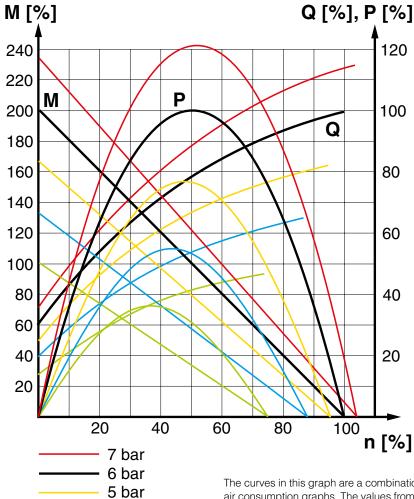
Central silencer

The noise from an air motor consists of both mechanical noise and a pulsating noise from the air flowing out of the outlet. The installation of the motor has a considerable effect on mechanical noise. It should be installed so that no mechanical resonance effects can occur. The outlet air creates a noise level which can amount to 115 dB(A) if the air is allowed to exhaust freely into the atmosphere. Various types of exhaust silencers are used to reduce this level. The most common type screws directly onto the exhaust port of the motor. Since the motor function causes the exhaust air to pulsate, it is a good idea to allow the air to exhaust into some kind of chamber first, which reduces the pulsations before they reach the silencer. The best silencing method is to connect a soft plastic hose to a large central silencer with the largest possible area, to reduce the speed of the out-flowing air as far as possible.

NOTE! Remember that if a silencer which is too small or is blocked, generates back pressure on the outlet side of the motor, which reduces the motor power.

CE marking

The air motors are supplied as "Components for installation" – the installer is responsible for ensuring that the motors are installed safely in the overall system. Parker Pneumatic guarantees that its products are safe, and as a supplier of pneumatic equipment we ensure that the equipment is designed and manufactured in accordance with the applicable EU directive.


Most of our products are classed as components as defined by various directives, and although we guarantee that the components satisfy the fundamental safety requirements of the directives to the extent that they are our responsibility, they do not usually carry the CE mark. Nevertheless, most P1V-S motors carry the CE mark because they are ATEX certified (for use in explosive atmospheres).

The following are the currently applicable directives:

- Machinery Directive(essential health and safety requirements relating to the design and structure of machines and safety components)
- EMC Directive
- Simple Pressure Vessels Directive
- Low Voltage Directive
- ATEX Directive (ATEX = ATmosphere Explosive)

Torque, power and air consumption graphs

P = power Q = air consumption
M = torque n = speed

____ 4 bar

— 3 bar

The curves in this graph are a combination of the torque, power and air consumption graphs. The values from the correction diagram have also been used for the curves for the different pressure values. The graph also shows that is it very important to ensure that the pressure supplied to the inlet port of the motor is correct, in order to allow the motor to work at maximum capacity. If the valve supplying a large motor is too small or if the supply line is underspecified, the pressure at the inlet port may be so low that the motor is unable to do its work. One solution would be to upgrade the valve and supply system, or alternatively you could replace the motor with a smaller motor with lower air consumption. The result would be increased pressure at the inlet port, which means that the smaller motor could carry out the necessary work. However, you may need to select a smaller motor with a lower free speed in order to obtain sufficient torque at the outgoing shaft.

Choice of an air motor, general

The motor to be used should be selected by starting with the torque needed at a specific spindle speed. In other words, to choose the right motor, you have to know the required speed and torque. Since maximum power is reached at half the motor's free speed, the motor should be chosen so that the point aimed at is as close as possible to the maximum power of the motor.

The design principle of the motor means that higher torque is generated when it is braked, which tends to increase the speed. This means that the motor has a kind of speed selfregulation function built in. Use the following graph to choose the correct motor size and the correct type of gear as appropriate. The graph contains the points for the maximum torque of each motor at maximum power. Put in your point on the graph and select a marked point above and to the right of the point you need.

Then check the characteristic graph of each motor to find more accurate technical data. Always select a motor where the data required is in the orange field. Also use the correction diagram to see what it would mean to use different air supply pressures or different air flow in the motor.

Tip: Select a motor which is slightly too fast and powerful, regulate its speed and torque with a pressure regulator and/or restriction to achieve the optimum working point.

Do you need any support to select the right air motor, please feel free to consult your local sales office.

Specifying air quality (purity) in accordance with ISO8573-1:2010, the international standard for Compressed Air Quality

ISO8573-1 is the primary document used from the ISO8573 series as it is this document which specifies the amount of contamination allowed in each cubic metre of compressed air.

ISO8573-1 lists the main contaminants as Solid Particulate, Water and Oil. The purity levels for each contaminant are shown separately in tabular form, however for ease of use, this document combines all three contaminants into one easy to use table.

			;	Solid Particulate		Water	Oil		
ISO8573-1:2010 CLASS	Maximum	number of partic	les per m³	Mass	Vapour Pressure Dewpoint	Liquid g/m ³	Total Oil (aerosol liquid and vapour)		
	0,1 - 0,5 micron	0,5 - 1 micron	1 - 5 micron	Concentration mg/m³			mg/m ³		
0		As sp	ecified by the equ	ipment user or sup	plier and more	e stringent tha	n Class 1		
1	≤ 20 000	≤ 400	≤ 10	-	≤ -70 °C	-	0,01		
2	≤ 400 000	≤ 6 000	≤ 100	-	≤ -40 °C	-	0,1		
3	-	≤ 90 000	≤ 1 000	-	≤ -20 °C	-	1		
4	-	-	≤ 10 000	-	≤ +3 °C	-	5		
5	-	-	≤ 100 000	-	≤ +7 °C	-	-		
6	-	-	-	≤ 5	≤ +10 °C	-	-		
7	-	-	-	5 - 10	-	≤ 0,5	-		
8	-	-	-	-	-	0,5 - 5	-		
9	-	-	-	-	-	5 - 10	-		
X	-	-	-	> 10	-	> 10	> 10		

Specifying air purity in accordance with ISO8573-1:2010

When specifying the purity of air required, the standard must always be referenced, followed by the purity class selected for each contaminant (a different purity class can be selected for each contamination if required).

An example of how to write an air quality specification is shown below:

ISO 8573-1:2010 Class 1.2.1

ISO 8573-1:2010 refers to the standard document and its revision, the three digits refer to the purity classifications selected for solid particulate, water and total oil. Selecting an air purity class of 1.2.1 would specify the following air quality when operating at the standard's reference conditions:

Class 1 - Particulate

In each cubic metre of compressed air, the particulate count should not exceed 20,000 particles in the 0.1 - 0.5 micron size range, 400 particles in the 0.5 - 1 micron size range and 10 particles in the 1 - 5 micron size range.

Class 2 - Water

A pressure dewpoint (PDP) of -40°C or better is required and no liquid water is allowed.

Class 1 - Oil

In each cubic metre of compressed air, not more than 0.01mg of oil is allowed. This is a total level for liquid oil, oil aerosol and oil vapour.

ISO8573-1:2010 Class zero

- Class 0 does not mean zero contamination.
- Class 0 requires the user and the equipment manufacturer to agree contamination levels as part of a written specification.
- The agreed contamination levels for a Class 0 specification should be within the measurement capabilities of the test equipment and test methods shown in ISO8573 Pt 2 to Pt 9.
- The agreed Class 0 specification must be written on all documentation to be in accordance with the standard.
- Stating Class 0 without the agreed specification is meaningless and not in accordance with the standard.
- A number of compressor manufacturers claim that the delivered air from their oil-free compressors is in compliance with Class 0.
- If the compressor was tested in clean room conditions, the contamination detected at the outlet will be minimal. Should the same compressor now be installed in typical urban environment, the level of contamination will be dependent upon what is drawn into the compressor intake, rendering the Class 0 claim invalid.
- A compressor delivering air to Class 0 will still require purification equipment in both the compressor room and at the point of use for the Class 0 purity to be maintained at the application.
- Air for critical applications such as breathing, medical, food, etc typically only requires air quality to Class 2.2.1 or Class 2.1.1.
- Purification of air to meet a Class 0 specification is only cost effective if carried out at the point of use.

New Technology

The P3X Lite air preparation system is constructed from ultra light weight technopolymers instead of the traditional aluminium or zinc die cast, this means that is up to 45% lighter than conventional units.

This non-metal construction also means that the P3X Lite is corrosion free enabling it to be used in harsh industrial environments where anti freeze or aggressive synthetic oils are present.

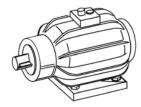

The use of technopolymers in the design of P3X Lite has facilitated a universal body design, this has resulted in reducing the number of variants required to cover the full spectrum of applications. This can dramatically lower logistic costs and simplify stock holding for customers making the P3X Lite a very cost effective solution.

New Nano Mist Technology, New Lubricator Concept. Self-Adjusting.

With conventional lubricators, only the oil volume per time unit can be adjusted. If the demand changes, the quantity dispensed still remains constant.

The P3X Lite lubricator concept sets new benchmarks here. For the first time, the oil volume is automatically adjusted to the flow rate. This ensures that there is neither too little nor too much oil in the system, which leads to clear economic and ecological advantages. In addition, with conventional systems, the distance between the lubricator and the equipment has to be less than 8 meters. With larger distances, the dispensed oil is deposited as a wall flow. The new lubricator principle of the P3X Lite allows for distances of up to 40 meters. This opens up new scope for the design of even more efficient production systems.

Air Motors


P1V-S, Stainless Steel Type 20 to 1200 Watts

Contents	Page
Stainless Steel Air Motors P1V-S	15
Choice of air motor	16
Overview	17
Technical data	18
Material specification	18
Permitted shaft loadings	19
Order key	20
Choice of vanes	20
Reversible air motor 20 watts	21
Torque and power graphs	21
Dimensions	21
Reversible air motor right direction 30 watts	22
Torque and power graphs	22
Dimensions	22
Reversible air motor 80 watts	23
Torque and power graphs	
Dimensions	23
Reversible air motor 120 watts	24
Torque and power graphs	24
Dimensions	25
Reversible air motor 200 watts	26
Torque and power graphs	
Dimensions	27
Reversible air motor 300 watts	28
Torque and power graphs	28
Dimensions	29
Reversible air motor 600 watts	30
Torque and power graphs	
Dimensions	
Reversible air motor 900 watts	32
Torque and power graphs	
Dimensions	
Reversible air motor 1200 watts	
Torque and power graphs	
Dimensions	35
Stainless Steel Air Motors with brakes P1V-S	36 - 45
Gtail liess Steel All Wotors with brakes FTV-S	30 - 43
High Torque Stainless Steel Air Motors P1V-S	47 - 55
Mountings	56
Lubrication and service life	57
Service kits	58 - 59
Introduction to the ATEX directive	60 - 64

P1V-S - Stainless Steel Air Motors

Air motors have much smaller installation dimensions than corresponding electric motors.

Air motors can be loaded until they stall, without damage. They are designed to be able to withstand the toughest heat, vibration, impact etc.

The shape, design and non-lubricated operation allow the motor to be suitable for use in the food industry.

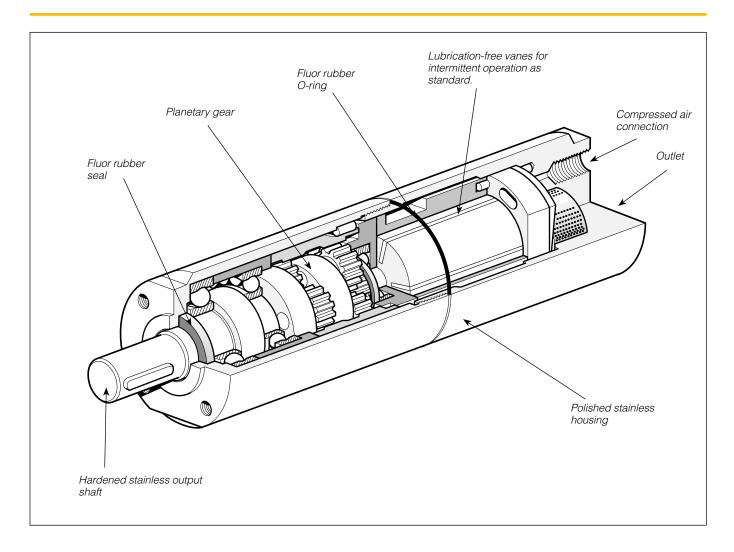
Air motors can be stopped and started continually without damage.

The weight of an air motor is several times less than corresponding electric motors.

Air motors can be used in the harshest environments. Most P1V-S motors are ATEX certified.

The choice of materials means that they can be used in damp and aggressive environments.

The simple design principle of air motors makes them very easy to service.



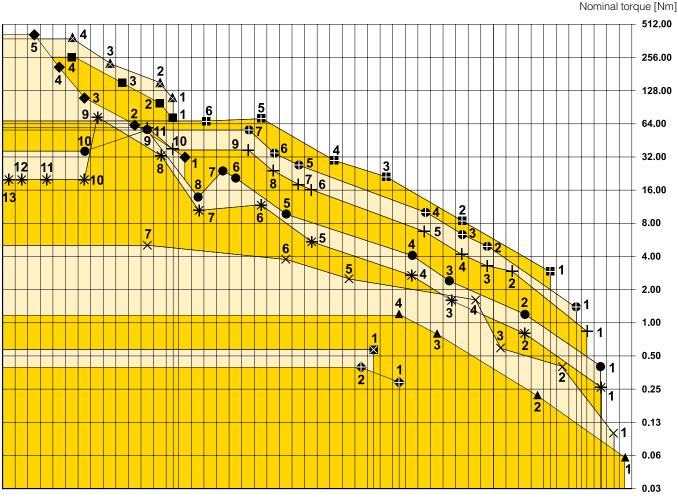
The motors are reversible as standard.

The reliability of air motors is very high, thanks to the design and the low number of moving parts.

Stainless Steel Air Motors

P1V-S is a range of air motors with all external components made of stainless steel, which means that they can be used in food grade applications, and in all other applications where there is a risk of corrosion.

The range contains seven different sizes, with powers ranging from 20 to 1 200 Watts, and speeds from 5 to 24 000 rpm. The air motor and planetary reduction gear are built into a polished stainless steel housing, which is sealed by a fluor rubber O-ring. The output shaft, which is made of polished stainless steel, is also sealed by a fluor rubber seal.


Consideration for achieving a clean, hygienic design was given early on in the development of this range of air motors. Thanks to the cylindrical shape, there are no pockets which can accumulate dirt or bacteria. Additionally, the two halves of the motor body are sealed

with an o-ring to prevent contamination. The choice of materials reflects the fact that aggressive cleaning materials are used in food grade applications.

The P1V-S series is designed to be operated in intermittent intervals under non-lubrication conditions. For this reason, no particles of lubricant escape with the exhaust air and the service costs are reduced. This means that the motors can be used directly in food grade applications. The planetary gear, which has one or more reduction stages, is lubricated with an USDA-H1 standard grease, approved for use in food grade applications.

Choice of an air motor

5 10 20 30 37 50 75 90 115 150 240 315 360 450 500 650 850 1200 1400 1800 2300 4000 6000 7250 12000 Nominal speed [rpm]

The motor to be used should be selected by starting with the torque needed at a specific shaft speed. In other words, to choose the right motor, you have to know the required speed and torque. Since maximum power is reached at half the motor's free speed, the motor should be chosen so that the oprating point is as close as possible to the maximum power of the motor.

The design principle of the motor means that higher torque is generated when it is braked, which tends to increase the speed, etc. This means that the motor has a kind of speed self-regulation function built in.

Use the above graph to choose the correct motor size. The graph contains the points for the maximum torque of each motor at maximum output. Add your operating point to the graph, then select a marked point above and to the right of your point.

Then use the correct working diagram of the chosen motor to get more detailed technical data. Always select a motor whose requisite technical data are in the shaded area. Also use the correction diagram to find out what operation with different supply pressures would mean for the motor.

Tip: Select a motor which is slightly too fast and powerful, then regulate its speed and torque with a pressure regulator and/or throttle to achieve the optimum working point.

-\$\(\) P1V-S002
-\$\(\) P1V-S003
-\$\(\) P1V-S012
-\$\(\) P1V-S020
-\$\(\) P1V-S030
-\$\(\) P1V-S060
-\$\(\) P1V-S090
-\$\(\) P1V-S120
-\$\(\) P1V-S028 HT
-\$\(\) P1V-S086 HT
-\$\(\) P1V-S086 HT

v	1 2	P1V-S002A0130 P1V-S002A0095		20 Watt	P1V-S002A
X	1	P1V-S003B0100		30 Watt	P1V-S003A
A A A	1 2 3 4	P1V-S008A0Q00 P1V-S008A0700 P1V-S008A0190 P1V-S008A0130		80 Watt	P1V-S008A
××××	1 2 3 4 5 6 7	P1V-S012A0N00, P1V-S012D0N00 P1V-S012A0550, P1V-S012D0550 P1V-S012A0360, P1V-S012D0360 P1V-S012A0140, P1V-S012D0140 P1V-S012A0090, P1V-S012D0090 P1V-S012A0060, P1V-S012D0060 P1V-S012A0010, P1V-S012D0010		120 Watt	P1V-S012
*****	11 12	P1V-S020A0E50, P1V-S020D0E50 P1V-S020A0460, P1V-S020D0460 P1V-S020A0240, P1V-S020D0240 P1V-S020A0140, P1V-S020D0140 P1V-S020A0070, P1V-S020D0070 P1V-S020A0032, P1V-S020D0032 P1V-S020A0018, P1V-S020D0018 P1V-S020A0005, P1V-S020D0005 P1V-S020A0002 P1V-S020A0001 P1V-S020A0001		200 Watt	P1V-S020
• • • • • • • • • • • • • • • • • • • •	1 2 3 4 5 6 7 8 9	P1V-S030A0E50, P1V-S030D0E50 P1V-S030A0460, P1V-S030D0460 P1V-S030A0240, P1V-S030D0240 P1V-S030A0140, P1V-S030D0140 P1V-S030A0060, P1V-S030D0060 P1V-S030A0034, P1V-S030D0034 P1V-S030A0023 P1V-S030A0018, P1V-S030D0018 P1V-S030A0010 P1V-S030A0005, P1V-S030D0005	High torque ↑ 1 P1V-S028A0017 ↑ 2 P1V-S028A0008 ↑ 3 P1V-S028A0005 ↑ 4 P1V-S028A0003 ↑ 5 P1V-S028A0002	300 Watt	P1V-S030
++++++++	1 2 3 4 5 6 7 8	P1V-S060A0E00 P1V-S060A0350 P1V-S060A0270 P1V-S060A0170 P1V-S060A0063 P1V-S060A0048 P1V-S060A0030 P1V-S060A0015	1 P1V-S057A0015 2 P1V-S057A0011 3 P1V-S057A0007 4 P1V-S057A0004	600 Watt	P1V-S060A
+++++++++++++++++++++++++++++++++++++	1 2 3 4 5 6 7	P1V-S090A0C00 P1V-S090A0350 P1V-S090A0270 P1V-S090A0170 P1V-S060A0063 P1V-S060A0048 P1V-S060A0030	1 P1V-S086A0015 2 P1V-S086A0011 3 P1V-S086A0007 4 P1V-S086A0004	900 Watt	P1V-S090A
	1 2 3 4 5 6	P1V-S120A0900 P1V-S120A0250 P1V-S120A0110 P1V-S120A0070 P1V-S120A0032 P1V-S120A0020		1200 Watt	P1V-S120A

Technical data

Air motor size & type	P1V- S002	P1V- S003	P1V- S008	P1V- S012	P1V- S020	P1V- S030	P1V- S060	P1V- S090	P1V- S120		
Nominal power (watts)	20	30	80	120	200	300	600	900	1200		
Working pressure (bar)		3 to 7, 6 in explosive atmosphere									
Working temperature (°C)	-20 to +110										
Ambient temperature (°C)			-	20 to +40 i	n explosive	atmospher	e				
Air flow required (NI/min)	100	100	230	300	370	470	850	1400	1600		
Min pipe ID, inlet (mm)	3	3	4	6	10	10	12	12	19		
Min pipe ID, outlet (mm)	3	3	4	6	10	10	12	12	19		

Choice of treatment unit: recommended min air flow (I/min) at p1 7.5 bar and 0.8 bar pressure drop

	120	120	260	340	410	510	900	1500	1800			
Medium		40µm filtered, oil mist or dry unlubricated compressed air										
Oil free operation, indoor		ISO8573-1 purity class 3.4.1										
Oil free operation, outdoor				ISO8573	-1 purity cla	ass 1.2.1						
Oil operation		1-2 drop per cube meter, ISO8573-1 purity class 35										
Recommended oil	Foodstuffs industry Klüber oil 4 UH1- 32 N											

Choice of valve: recommended min nominal air flow (I/min) at p1 6 bar and 1 bar pressure drop

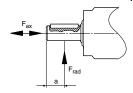
	140	140	290	380	450	550	950	1600	2000
Sound level free outlet (dB(A))	98	98	95	99	100	103	103	106	108
With outlet silencer (dB(A))	85	85	85	92	82	91	94	88	95
Exhaust air removed with pipes to another room	74	74	71	70	71	70	76	80	87

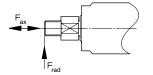
Note: sound levels are measured at free speed with the measuring instrument positioned 1 meter away from the air motor at an height of 1 meter.

Table and diagram data

All technical data are based on a working pressure of 6 bar and with oil. Oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

Material specification


Air motor size & type	P1V- S002	P1V- S003	P1V- S008	P1V- S012	P1V- S020	P1V- S030	P1V- S060	P1V- S090	P1V- S120	
Planetary gearbox housing		Stainless steel								
Planetary gearbox housing for last planet stage including installation flange	-	-	-	-		Black oxidised steel (not stainless)	-	-	-	
Air motor housing	Stainless steel									
Shaft				Harde	ned stainle	ss steel				
Key				Harde	ned stainle	ss steel				
External seal Fluor rubber				Flu	or rubber F	PM				
Internal steel parts				High grad	le steel (no	t stainless)				
Planetary gear grease used in				Grease,	Shell Cass	ida RLS2				
Screws in housing in last planet stage		Surface treated steel (not stainless)								


Accessories	P1V
Flange bracket	Stainless steel
Foot bracket	Stainless steel
Screws for the mountings	Stainless steel DIN A2

Permitted shaft loadings

Max. permitted load on output shaft for motors (based on 10 000 000 rpm at input shaft with 90 % probable service life for ball bearings).

Frad [N]

a [mm]

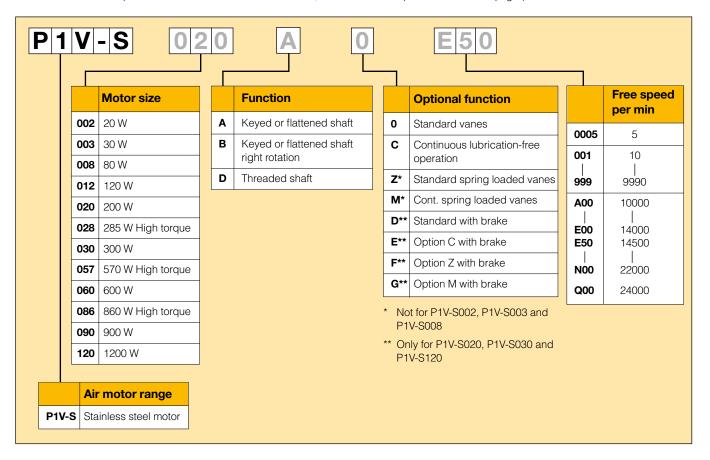
Fig 1: Load on output shaft for basic motor with keyed shaft.

Fig. 2: Load on output shaft for basic motor with threaded shaft.

Order code	Fax [N]	Frad [N]	a [mm]
P1V-S002A0130	140	180	6
1V-S002A0095	140	180	6
1V-S003B0100	140	180	6
1V-S008A0Q00	200	220	7
1V-S008A0700	200	220	7
1V-S008A0190	200	220	7
IV-S008A0130	200	220	7
4V CO404NO0	000	100	0
1V-S012AN00	380	160	9
1V-S012A550 1V-S012A360	380 380	160 160	9
1V-S012A360 1V-S012A140	380	160	9
1V-S012A140 1V-S012A090	380	160	9
V-S012A060	380	160	9
V-S012A010	380	160	9
1V-S020A0E50	570	720	12
1V-S020A0460	570	720	12
IV-S020A0240	570	720	12
V-S020A0140	570	720	12
IV-S020A0070	570	720	12
IV-S020A0032	570	720	12
1V-S020A0018	570	720	12
IV-S020A0005	570	720	12
IV-S020A0002	570	720	12
IV-S020A0001	570	720	12
IV-S020A00005	570	720	12
IV-S030A0E50	570	1130	14
V-S030A0460	570	1130	14
V-S030A0240	570	1130	14
V-S030A0140	570	1130	14
V-S030A0060	790	1070	15
V-S030A0034	790	1070	15
V-S030A0023	790	1070	15
V-S030A0018	790	1070	15
V-S030A0010	790	1070	15
V-S030A0010	790	1070	15
	, 50	1010	10
V-S060A0E00	1110	1300	15
V-S060A0350	1110	1300	15
/-S060A0270	1110	1300	15
/-S060A0170	1110	1300	15
V-S060A0063	1110	1300	15
V-S060A0048	1130	2090	18
V-S060A0030	1130	2090	18
V-S060A0015	1130	2090	18
V-S090A0C00	1110	1300	15
V-S090A0C00 V-S090A0350	1110 1110	1300	15
V-S090A0330	1110	1300	15
V-S090A0270 V-S090A0170	1110	1300	15
V-S090A0170 V-S090A0063	1110	1300	15
V-S090A0048	1130	2090	18
/-S090A0030	1130	2090	18
V-S120A0900	2330	2260	18
V-S120A0250	2330	2260	18
V-S120A0110	2330	2260	18
V-S120A0070	2330	2700	30
V-S120A0032	2330	2700	30
/-S120A0020	2330	2700	30
/-S028A0017	1500	3500	21
V-S028A0017	1500	3500	21
V-S028A0005	1500	3500	21
V-S028A0003	1500	3500	20
V-S028A0003 V-S028A0002	1500	3500	20
* CUZUMUUUZ	1000	0000	20
V-S057A0015	1500	3500	21
V-S057A0011	1500	3500	21
V-S057A0007	1500	3500	21
IV-S057A0004	1500	3500	22.5
V-S086A0015	1500	3500	21
V-S086A0011	1500	3500	21
		2500	21
IV-S086A0007 IV-S086A0004	1500 1500	3500 3500	22.5

Motor with threaded shaft

Order code


P1V-S012DN00	380	110	0
P1V-S012D550	380	110	0
P1V-S012D360	380	110	0
P1V-S012D140	380	110	0
P1V-S012D090	380	110	0
P1V-S012D060	380	110	0
P1V-S012D010	380	110	0
P1V-S020D0E50	570	450	0
P1V-S020D0460	570	450	0
P1V-S020D0240	570	450	0
P1V-S020D0240	570	450	0
P1V-S020D0070	570	450	0
P1V-S020D0070			
	570	450	0
P1V-S020D0018	570	450	0
P1V-S020D0005	570	450	0
P1V-5020D0005	570	450	U
P1V-S030D0E50	570	860	0
P1V-S030D0460	570	860	0
P1V-S030D0240	570	860	0
P1V-S030D0140	570	860	0
P1V-S030D0060	790	820	0
P1V-S030D0034	790	820	0
P1V-S030D0018	790	820	0
D4V 6020D0005	700	000	0
P1V-S030D0005	790	820	0

Frad = Radial loading (N) Fax = Axial loading (N)
a = distance from shaft's end (mm)

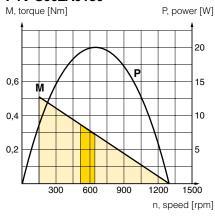
Order key

(This model code can not be used for creating new part numbers except for optional function. All possible combinations between motor size, function and free speed are in the next pages).

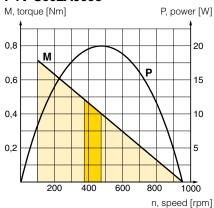
Choice of vanes

0 = Standard vanes	C = Vanes for continuous lubrication-free operation	Z = Standard spring loaded vanes	M = Spring loaded vanes for continuous lubrication-free operation
These motors are of the vane type for intermittent lubrication-free operation. They can operate 70% of the time for up to 15 minutes without lubrication. With lubrication, these motors can operation 100% of the time.	This motor is equipped with vanes for continuous lubrication-free operation. (To obtain the longest possible service life, we recommend no oil in the air.)	All vanes are spring loaded to ensure that they remain pressed against the cylinder when the motor stops. The spring loaded vane option also prevents the vanes from sliding down in their track if vibration is introduced. The spring loaded vanes therefore provide a higher starting torque, improved starting and low speed characteristics, because the leakage over the vanes is reduced to a minimum.	Multi (combination of Z + C) see previous columns

NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%


Data for reversible air motor with flattened shaft, P1V-S002A series

Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air con- sumption at max power	Conn	. Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,02	1300	650	0,29	0,44	1,7	M5	3	0,16	P1V-S002A0130
0,02	950	475	0,40	0,60	1,7	M5	3	0,16	P1V-S002A0095

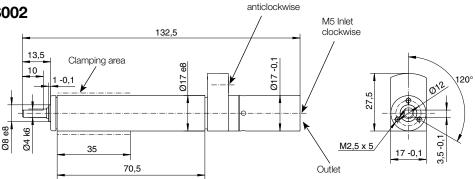

NOTE! Not available with vane options C, Z or M.

The P1V-S002A requires oil mist for lubricating the gearbox.

P1V-S002A0130

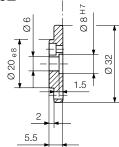
P1V-S002A0095 M, torque [Nm]

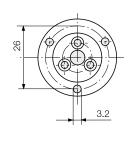
Possible working range of motor.



M5 Inlet

Optimum working range of motor.


Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear

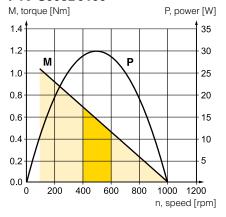

Dimensions (mm) Motor P1V-S002

Flange for P1V-S002

P1V-S4002B

^{*} maximum admissible speed (idling)

NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

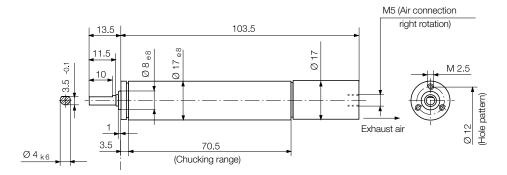

Data for right rotation air motor with flattened shaft, P1V-S003A series

Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air con- sumption at max power	Conn. Mir	n pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,03	1000	500	0,57	0,85	1,7	M8x0,75	3	0,13	P1V-S003B0100

NOTE! Not available with vane options C, Z or M.

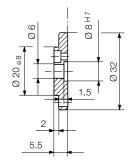
The P1V-S003A requires oil mist for lubricating the gearbox.

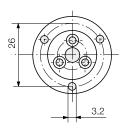
P1V-S003B0100



Possible working range of motor.

Optimum working range of motor.


Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear

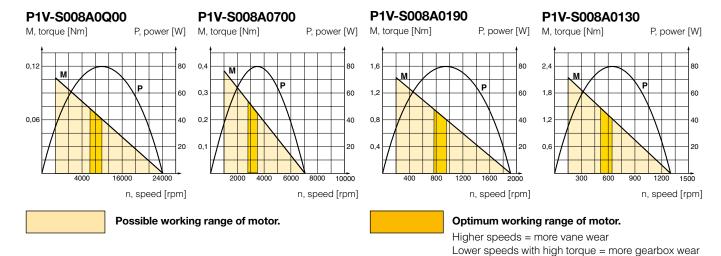

Motor P1V-S003

Flange for P1V-S003

P1V-S4002B

^{*} maximum admissible speed (idling)

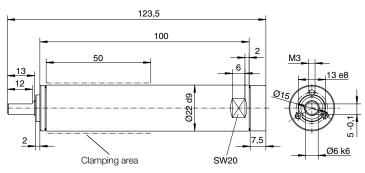
NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%


Data for reversible air motor with flattened shaft, P1V-S008A series

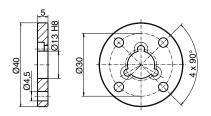
Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air con- sumption at max power	Conn. Min	pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,08	22000	11000	0,06	0,09	3,8	M8x0,75**	4	0,20	P1V-S008A0Q00
0,08	7000	3500	0,22	0,33	3,8	M8x0,75**	4	0,20	P1V-S008A0700
0,08	1900	950	0,80	1,20	3,8	M8x0,75**	4	0,22	P1V-S008A0190
0,08	1300	650	1,20	1,80	3,8	M8x0,75**	4	0,22	P1V-S008A0130

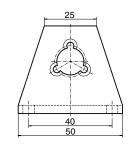
^{** 3} push in nipples for plastic pipe Ø6/4 supplied NOTE! Not available with vane options C, Z or M.

The P1V-S008A requires oil mist for lubricating the gearbox.


^{*} maximum admissible speed (idling)

Dimensions (mm)


Motor P1V-S008

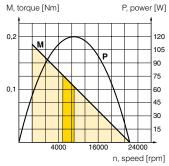

Flange

P1V-S4008B

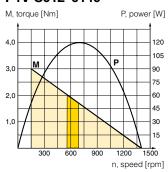
Foot bracket

P1V-S4008F

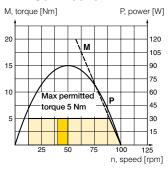
NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

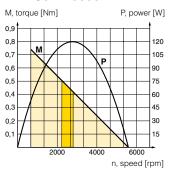


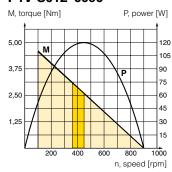
Data for reversible air motor, P1V-S012A series

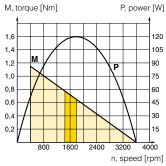

Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,120	22000	11000	0,10	0,15	5,0	G1/8	6	0,350	P1V-S012•0N00
0,120	5500	2750	0,40	0,60	5,0	G1/8	6	0,350	P1V-S012•0550
0,120	3600	1800	0,60	0,90	5,0	G1/8	6	0,350	P1V-S012•0360
0,120	1400	700	1,60	2,40	5,0	G1/8	6	0,400	P1V-S012•0140
0,120	900	450	2,50	3,80	5,0	G1/8	6	0,400	P1V-S012•0090
0,120	600	300	3,80	5,00**	5,0	G1/8	6	0,400	P1V-S012•0060
0,090	100	50	5,00**	5,00**	5,0	G1/8	6	0,450	P1V-S012•0010

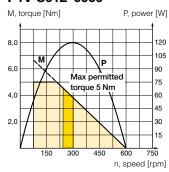
^{**} Max permitted torque for the gearbox


P1V-S012•0N00


P1V-S012•0140


P1V-S012•0010


P1V-S012•0550

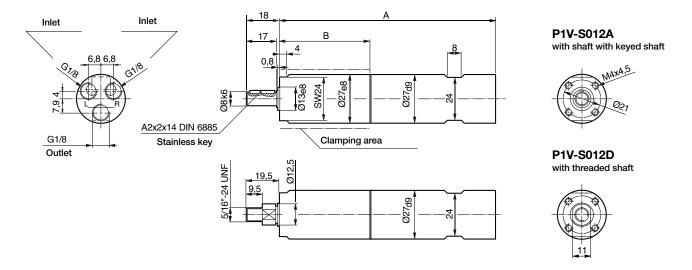

P1V-S012•0090

P1V-S012•0360

P1V-S012•0060

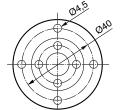
ı

Possible working range of motor.

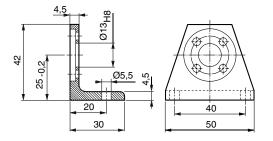

Optimum working range of motor.

^{*} maximum admissible speed (idling)
The P1V-S012D with threaded shaft may be reversed, but when operated anticlockwise, there is a risk that the driven unit may disconnect if it is not locked properly.

[•] A letter for keyed shaft, D for threaded end shaft


Motor P1V-S012

	Α	В
P1V-S012A0N00, P1V-S012D0N00	117,0	46,5
P1V-S012A0550, P1V-S012D0550	117,0	46,5
P1V-S012A0360, P1V-S012D0360	117,0	46,5
P1V-S012A0140, P1V-S012D0140	129,5	59,0
P1V-S012A0090, P1V-S012D0090	129,5	59,0
P1V-S012A0060, P1V-S012D0060	129,5	59,0
P1V-S012A0010. P1V-S012D0010	142.0	71.5

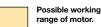

Flange

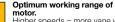
P1V-S4012B

Foot bracket

P1V-S4012F

NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%




Data for reversible air motor with keyed shaft, P1V-S020A series

				•					
Order code	Weight	Min pipe ID	Conn.	Air con- sumption at max power	Min start torque	Nominal torque	Nominal speed	Free speed*	Max power
	Kg	mm		l/s	Nm	Nm	rpm	rpm	kW
P1V-S020•0E50	0,700	10	G1/8	6,2	0,40	0,26	7250	14500	0,200
P1V-S020 • 0460	0,750	10	G1/8	6,2	1,20	0,80	2300	4600	0,200
P1V-S020 • 0240	0,750	10	G1/8	6,2	2,40	1,60	1200	2400	0,200
P1V-S020 • 0140	0,850	10	G1/8	6,2	4,10	2,70	700	1400	0,200
P1V-S020 • 0070	0,850	10	G1/8	6,2	8,20	5,40	350	700	0,200
P1V-S020 • 0032	0,850	10	G1/8	6,2	18,00	12,00	160	320	0,200
P1V-S020 • 0018	0,850	10	G1/8	4,5	15,00	10,50	90	180	0,100
P1V-S020 • 0005	0,950	10	G1/8	6,2	20**	20**	25	50	0,180
P1V-S020A0002	0,950	10	G1/8	6,2	20**	20**	-	20	0,180
P1V-S020A0001	1,050	10	G1/8	6,2	20**	20**	-	10	0,180
P1V-S020A00005	1,050	10	G1/8	6,2	20**	20**	-	5	0,180

^{**} Max permitted torque to not damage the gearbox.

The P1V-S020D with threaded shaft may be reversed, but when operated anticlockwise, there is a risk that the driven unit may disconnect if it is not locked properly.

motor.
Higher speeds = more vane wear
Lower speeds with high torque =
more gearbox wear

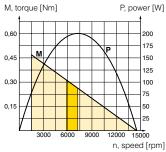
175

150

125

100

50


25

 A letter for keyed shaft. D for threaded end shaft

P1V-S020 • 0E50

P1V-S020 • 0070

M, torque [Nm]

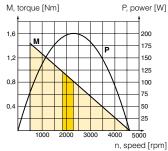
P, power [W]

200

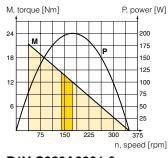
175

150

125


100

75

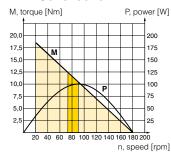

25

n, speed [rpm]

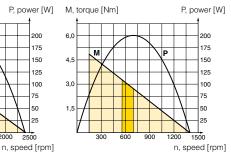
P1V-S020 • 0460

P1V-S020 • 0032

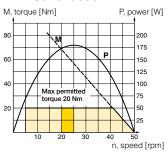
P1V-S020 • 0018

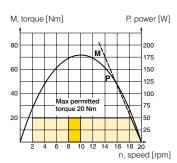

P1V-S020 • 0240

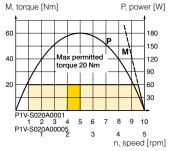
M, torque [Nm]


2.25

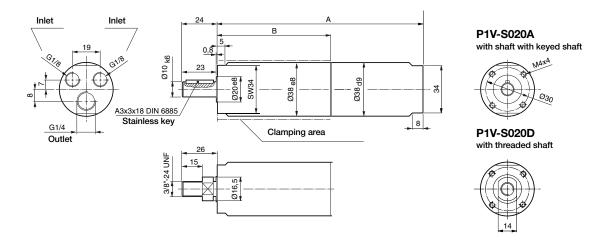
1,50


0,75


P1V-S020 • 0140

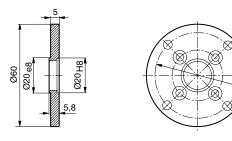

P1V-S020 • 0005

P1V-S020A0002

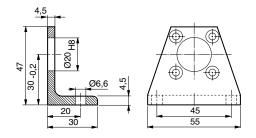


P1V-S020A0001 & P1V-S020A00005

^{*} maximum admissible speed (idling)


Dimensions (mm) Motor P1V-S020

		Α	В
P1V-S020A0E50,	P1V-S020D0E50	127	63,5
P1V-S020A0460,	P1V-S020D0460	127	63,5
P1V-S020A0240,	P1V-S020D0240	127	63,5
P1V-S020A0140,	P1V-S020D0140	143	79,5
P1V-S020A0070,	P1V-S020D0070	143	79,5
P1V-S020A0032,	P1V-S020D0032	143	79,5
P1V-S020A0018,	P1V-S020D0018	143	79,5
P1V-S020A0005,	P1V-S020D0005	159	95,5
P1V-S020A0002		159	95,5
P1V-S020A0001		175	111,5
P1V-S020A00005	5	175	111,5


Flange

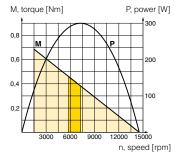
P1V-S4020B

Foot bracket

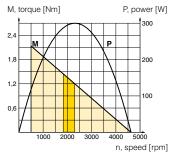
P1V-S4020F

NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower.

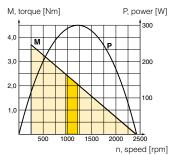
Data tolerance accuracy -+10%

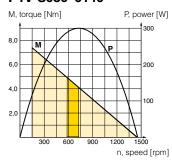


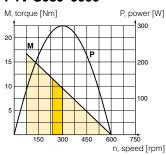
Data for reversible air motor with keyed shaft, P1V-S030A series

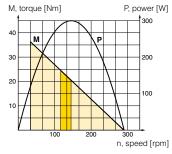

Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,300	14500	7250	0,40	0,60	7,8	G1/4	10	1,000	P1V-S030+0E50
0,300	4600	2300	1,20	1,90	7,8	G1/4	10	1,050	P1V-S030 • 0460
0,300	2400	1200	2,40	3,60	7,8	G1/4	10	1,050	P1V-S030 • 0240
0,300	1400	700	4,10	6,10	7,8	G1/4	10	1,100	P1V-S030•0140
0,300	600	300	9,60	14,30	7,8	G1/4	10	1,150	P1V-S030 • 0060
0,300	340	170	16,90	25,30	7,8	G1/4	10	1,150	P1V-S030 • 0034
0,300	230	115	24,00	36,00	7,8	G1/4	10	3,300	P1V-S030A0023
0,130	180	90	13,80	21,00	4,7	G1/4	10	1,150	P1V-S030+0018
0,300	100	50	57,00	85,50	7,8	G1/4	10	3,300	P1V-S030A0010
0,280	50	25	36**	36**	7,8	G1/4	10	1,250	P1V-S030•0005

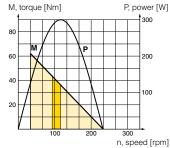
^{**} Max permitted torque to not damage the gearbox.


P1V-S030 • 0 E 5 0

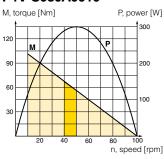

P1V-S030 • 0460

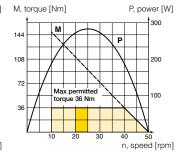

P1V-S030 • 0240


P1V-S030•0140


P1V-S030 • 0060

P1V-S030•0034

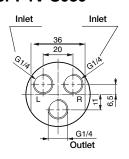

P1V-S030A0023

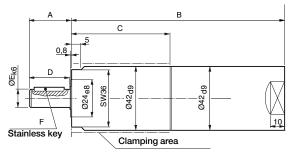

P1V-S030•0018

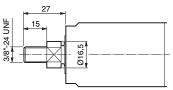
P1V-S030A0010

P1V-S030 • 0005

Possible working range of motor.


Optimum working range of motor.

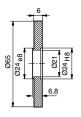


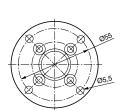

^{*} maximum admissible speed (idling)
The P1V-S030D with threaded shaft may be reversed,
but when operated anticlockwise, there is a risk that the
driven unit may disconnect if it is not locked properly.

A letter for keyed shaft, D for threaded end shaft

Dimensions (mm) Motor P1V-S030

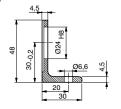
P1V-S030A with shaft with keyed shaft

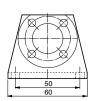

P1V-S030D with threaded shaft

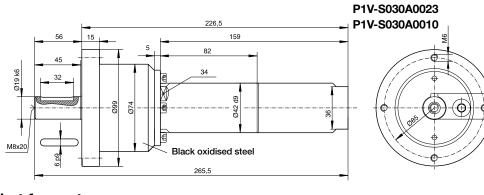


	Α	В	С	D	E	F
P1V-S030A0E50, P1V-S030D0E50	28,5	143	66	27	12	A4x4x20 DIN 6885
P1V-S030A0460, P1V-S030D0460	28,5	143	66	27	12	A4x4x20 DIN 6885
P1V-S030A0240, P1V-S030D0240	28,5	143	66	27	12	A4x4x20 DIN 6885
P1V-S030A0140, P1V-S030D0140	28,5	159	82	27	12	A4x4x20 DIN 6885
P1V-S030A0060, P1V-S030D0060	32,0	159	82	30	14	A5x5x20 DIN 6885
P1V-S030A0034, P1V-S030D0034	32,0	159	82	30	14	A5x5x20 DIN 6885
P1V-S030A0018, P1V-S030D0018	32,0	159	82	30	14	A5x5x20 DIN 6885
P1V-S030A0005, P1V-S030D0005	32,0	164	82	30	14	A5x5x20 DIN 6885

Flange

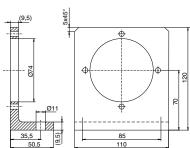

P1V-S4030B





Foot bracket

P1V-S4030F

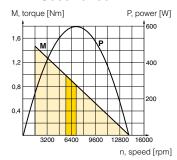


Foot bracket for motors

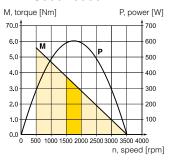
P1V-S030A0023 and P1V-S030A0010

P1V-S4020C

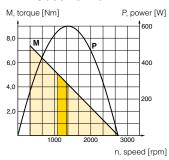
NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

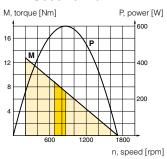


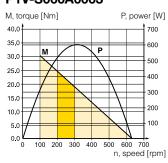
Data for reversible air motor with keyed shaft, P1V-S060A series

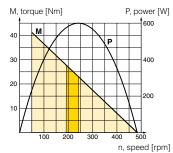

Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,600	14000	7000	0,82	1,23	14,2	G3/8	12	2,200	P1V-S060A0E00
0,600	3500	1750	3,20	4,80	14,2	G3/8	12	2,300	P1V-S060A0350
0,600	2700	1350	4,20	6,40	14,2	G3/8	12	2,300	P1V-S060A0270
0,600	1700	850	6,70	10,10	14,2	G3/8	12	2,300	P1V-S060A0170
0,600	630	315	18,00	27,00	14,2	G3/8	12	2,600	P1V-S060A0063
0,600	480	240	24,00	36,00	14,2	G3/8	12	2,700	P1V-S060A0048
0,600	300	150	38,00	57,00	14,2	G3/8	12	2,700	P1V-S060A0030
0,300	150	75	38,00	57,00	14,2	G3/8	12	2,700	P1V-S060A0015

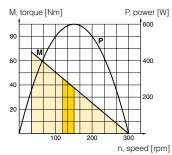
^{*} maximum admissible speed (idling)

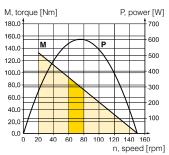

P1V-S060A0E00


P1V-S060A0350


P1V-S060A0270

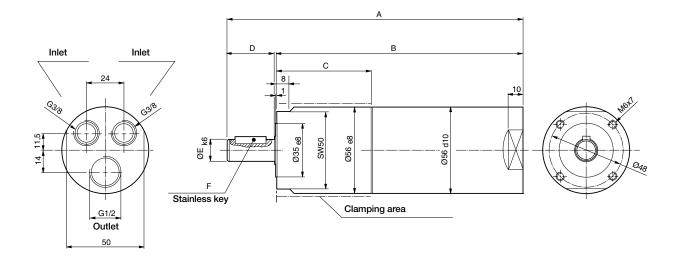

P1V-S060A0170


P1V-S060A0063

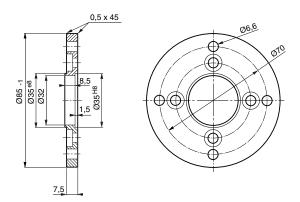

P1V-S060A0048

P1V-S060A0030

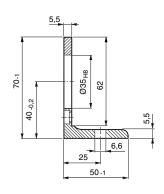
P1V-S060A0015

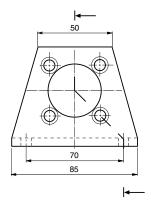

Possible working range of motor.

Optimum working range of motor.


Motor P1V-S060

	Α	В	С	D	E	F
P1V-S060A0E00	197	165,5	66	30	14	A5x5x20 DIN 6885
P1V-S060A0350	197	165,5	66	30,5	14	A5x5x20 DIN 6885
P1V-S060A0270	197	165,5	66	30,5	14	A5x5x20 DIN 6885
P1V-S060A0170	197	165,5	66	30,5	14	A5x5x20 DIN 6885
P1V-S060A0063	215	183,5	84	30,5	14	A5x5x20 DIN 6885
P1V-S060A0048	217	180,0	80,5	36	19	A6x6x22 DIN 6885
P1V-S060A0030	217	180,0	80,5	36	19	A6x6x22 DIN 6885
P1V-S060A0015	217	180,0	80	35	19	A6x6x22 DIN 6885

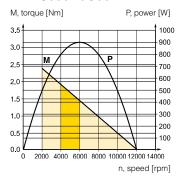

Flange


P1V-S4060B

Foot bracket

P1V-S4060F

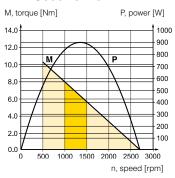
NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

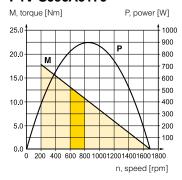


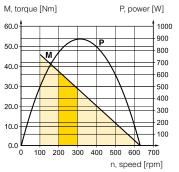
Data for reversible air motor with keyed shaft, P1V-S090A series

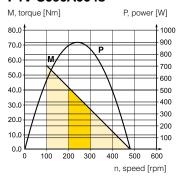
Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,900	12000	6000	1,40	2,10	23,3	G1/2	12	2,500	P1V-S090A0C00
0,900	3500	1750	4,90	7,30	23,3	G1/2	12	2,600	P1V-S090A0350
0,900	2700	1350	6,30	9,50	23,3	G1/2	12	2,600	P1V-S090A0270
0,900	1700	850	10,10	15,20	23,3	G1/2	12	2,600	P1V-S090A0170
0,900	630	315	27,00	40,00	23,3	G1/2	12	2,900	P1V-S090A0063
0,900	480	240	35,00	53,00	23,3	G1/2	12	3,000	P1V-S090A0048
0,900	300	150	57,00	85,00	23,3	G1/2	12	3,000	P1V-S090A0030

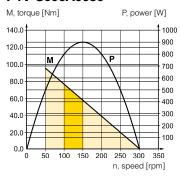
^{**} Max permitted torque to not damage the gearbox.

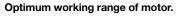

P1V-S090A0C00


P1V-S090A0350

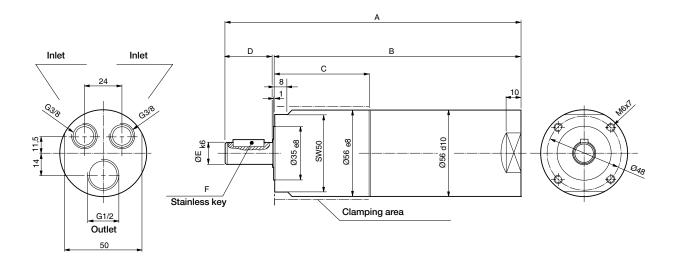

P1V-S090A0270


P1V-S090A0170

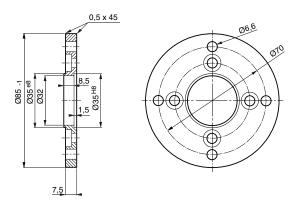

P1V-S090A0063


P1V-S090A0048

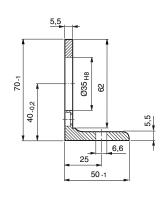
P1V-S090A0030

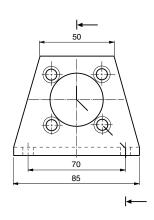

Possible working range of motor.

^{*} Maximum admissible speed (idling)


Motor P1V-S090

	Α	В	С	D	E	F
P1V-S090A0C00	217	185,5	67	30,5	14	A5x5x20 DIN 6885
P1V-S090A0350	217	185,5	67	30,5	14	A5x5x20 DIN 6885
P1V-S090A0270	217	185,5	67	30,5	14	A5x5x20 DIN 6885
P1V-S090A0170	217	185,5	67	30,5	14	A5x5x20 DIN 6885
P1V-S090A0063	235	203,5	85	30,5	14	A5x5x20 DIN 6885
P1V-S090A0048	237	200,0	81	36	19	A6x6x22 DIN 6885
P1V-S090A0030	237	200,0	81	36	19	A6x6x22 DIN 6885

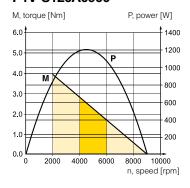

Flange


P1V-S4060B

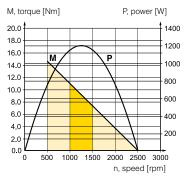
Foot bracket

P1V-S4060F

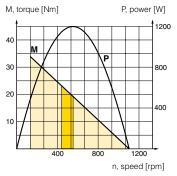
NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

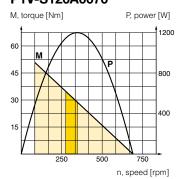


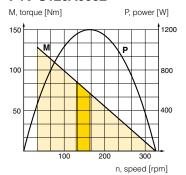
Data for reversible air motor with keyed shaft, P1V-S120A series

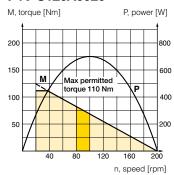

Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
1,200	9000	4500	2,50	3,80	26,7	G3/4	19	5,5	P1V-S120A0900
1,200	2500	1250	9,20	13,70	26,7	G3/4	19	5,5	P1V-S120A0250
1,200	1100	550	21,00	31,00	26,7	G3/4	19	6,1	P1V-S120A0110
1,200	700	350	33,00	49,00	26,7	G3/4	19	5,6	P1V-S120A0070
1,200	320	160	71,00	107,00	26,7	G3/4	19	6,7	P1V-S120A0032
0,700	200	100	66,90	100.00	19	G3/4	19	6,7	P1V-S120A0020

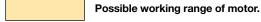
^{*} Maximum admissible speed (idling)

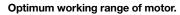

P1V-S120A0900


P1V-S120A0250

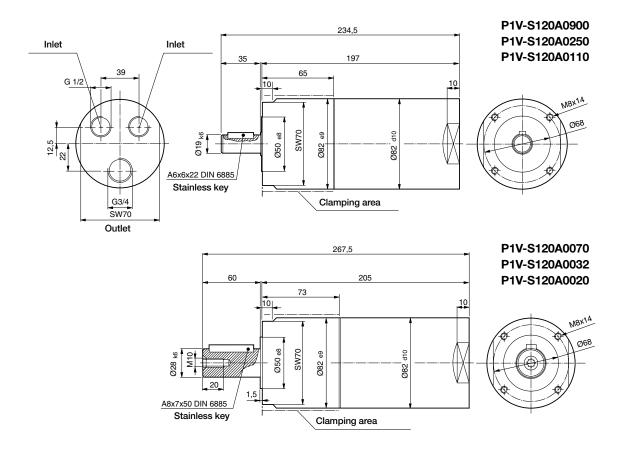

P1V-S120A0110

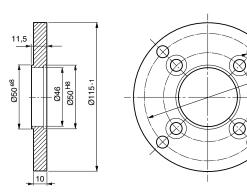

P1V-S120A0070




P1V-S120A0032

P1V-S120A0020





Motor P1V-S120

Flange

P1V-S4120B

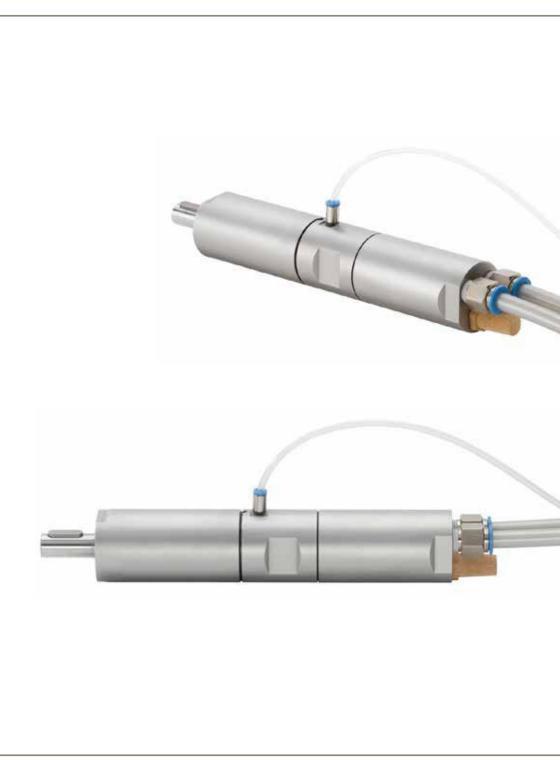


Foot bracket

P1V-S4120F

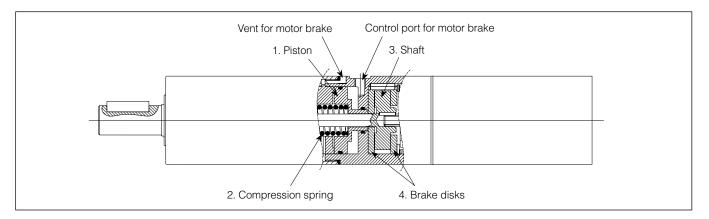
Ø9_

Ø100



Air Motors

P1V-S Stainless Steel with Brake Type 200, 300 & 1200 Watts



P1V-S - Stainless Steel Air Motors with Brakes

Contents	Page
Introduction	39
Stainless Steel Air Motors with Brakes 200 watts Dimensions	
Stainless Steel Air Motors with Brakes 300 watts	
Stainless Steel Air Motors with Brakes 1200 watts Dimensions	
Mountings Lubrication and service life Service kits	57

Introduction

Applications

The integrated brake is a spring-loaded disk brake, which is released at a minimum air pressure of 5 bar. The brake is applied in the absence of pressure. As soon as the control port for the brake is placed under pressure, the piston (1) is pressurised and the spring (2) is compressed. The motor can now start and the torque is passed to the shaft (3). The ventilation air from the brake is connected with the atmosphere. In order to brake the motor, the control air to the brake is simply vented. The piston (1) is pushed to the right by the spring (2), and the axle (3) is jammed between the two brake disks (4).

The technology and the size of air motors with stationary brake make them ideal for applications requiring short stops after having cutting air pressure inside the air motors for blocking the rotation. Another typical application for brake motors is when the output shaft needs to be held in one position when the motor stops delivering torque and must stays in position. The brake can handle more than 1500 braking operations per hour at maximum braking torque.

Disassembly and Reassembly

Detach the connections with the motor and gearbox. Pull off the motor and gearbox part. The brake disks can be lifted off after the lock ring has been removed.

Service and Maintenance

After 20 000 braking operations as a stationary brake or 10 000 braking operations as an operating brake, the brake must be disassembled in order to check for wear.

Warning:

If the number of braking operations is exceeded, the degree of wear might be greater than permitted and the braking effect might be lost. If this happens, you simply need to replace the worn brake linings. Tests show that the brake lining needs to be replaced after approx. 90 000 braking cycles.

NOTE!

Brake motors must only ever be supplied with unlubricated air, otherwise there is a risk of oil from the supply air getting into the brake unit, resulting in poor brake performance or no braking effect

Air motor size & type	200 watts, ••• = 020		300 watts	, ••• = 030	1200 watts, ••• = 120		
	Motor Max torque Nm	Theoretical min braking torque Nm	Motor Max torque Nm	Theoretical min braking torque Nm	Motor Max torque Nm	Theoretical min braking torque Nm	
P1V-S•••ADE50	0.52	1	0.8	1	-	-	
P1V-S120AD900	-	-	-	-	5	6.2	
P1V-S•••AD460	1.6	3.4	2.4	34	-	-	
P1V-S120AD250	-	-	-	-	18.4	2.3	
P1V-S•••AD240	3.2	6.7	4.8	6.7	-	-	
P1V-S•••AD140	5.4	11.8	8.2	11.8	-	-	
P1V-S120AD110	-	-	-	-	42	52	
P1V-S•••AD070	10.8	20	-	-	66	83	
P1V-S•••AD034	-	-	19.2	36	-	-	
P1V-S•••AD032	24	44.4	-	-	142	177	
P1V-S030AD023	-	-	48	70.8	-	-	
P1V-S•••AD018	21	44.4	47.2	123.6	-	-	
P1V-S020AD011	66	137.2	-	-	-	-	
P1V-S030AD010	-	-	114	123.6	-	-	
P1V-S020AD006	144	266.4	-	-	-	-	
P1V-S•••AD005	20*	44.4	36*	40	-	-	
P1V-S020AD002	20*	44.4	-	-	-	-	
P1V-S020AD001	20*	44.4	-	-	-	-	
P1V-S020AD0005	20*	44.4	-	-	-	-	

*Warning !: the permitted torque for the specific gearbox must not be exceeded.

Brake release: minimum air pressure of 5 bar

Technical data

Air motor size & type	P1V-S020	P1V-S030	P1V-S120						
Nominal power (watts)	200	300	1200						
Working pressure (bar)	3 to 7, 6 in exp	3 to 7, 6 in explosive atmosphere (with brake not atex certified)							
Working temperature (°C)		-20 to +110							
Ambient temperature (°C)	-20 to +40 in ex	plosive atmosphere (with brake n	ot atex certified)						
Air flow required (NI/min)	370	470	1600						
Min pipe ID, inlet (mm)	10	10	19						
Min pipe ID, outlet (mm)	10	10	19						

Choice of treatment unit: recommended min air flow (I/min) at p1 7.5 bar and 0.8 bar pressure drop

	410	510	1800					
Medium	40µm filtered, oil mist or dry unlubricated compressed air							
Oil free operation, indoor	ISO8573-1 purity class 3.4.1							
Oil free operation, outdoor		ISO8573-1 purity class 1.2.1						
Oil operation	1-2 drop per cube meter, ISO8573-1 purity class 35							
Recommended oil	Foodstuffs industry Klüber oil 4 UH1- 32 N							

Choice of valve: recommended min nominal air flow (I/min) at p1 6 bar and 1 bar pressure drop

	450	550	2000
Sound level free outlet (dB(A))	100	103	108
With outlet silencer (dB(A))	82	91	95
Exhaust air removed with pipes to another room	71	70	87

Note: sound levels are measured at free speed with the measuring instrument positioned 1 meter away from the air motor at an height of 1 meter.

Table and diagram data

All technical data are based on a working pressure of 6 bar and with oil. Oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

Material specification

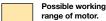
Air motor size & type	P1V-S020	P1V-S030	P1V-S120				
Planetary gearbox housing		Stainless steel					
Planetary gearbox housing for last planet stage including installation flange	Stainless Steel or Black o	Stainless Steel or Black oxidised steel (not stainless)					
Air motor housing		Stainless steel					
Shaft		Hardened stainless steel					
Key	Hardened stainless steel						
External seal Fluor rubber		Fluor rubber FPM					
Internal steel parts		High grade steel (not stainless)					
Planetary gear grease used in		Grease, Shell Cassida RLS2					
Screws in housing in last planet stage	Surface treated steel (not stainless)						
Accessories	P1V						
Flange bracket	Stainless steel						
Foot bracket	Stainless steel						

Screws for the mountings

Stainless steel DIN A2

P1V-S - Stainless Steel Air Motors with Brakes

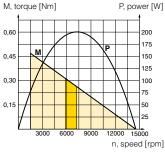
NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

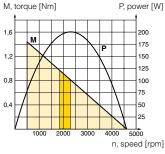


Data for reversible brake motor with keyed shaft, P1V-S020AD series

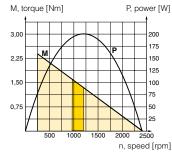
Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,200	14500	7250	0,26	0,40	6,2	G1/8	10	1,000	P1V-S020ADE50
0,200	4600	2300	0,80	1,20	6,2	G1/8	10	1,050	P1V-S020AD460
0,200	2400	1200	1,60	2,40	6,2	G1/8	10	1,050	P1V-S020AD240
0,200	1400	700	2,70	4,10	6,2	G1/8	10	1,150	P1V-S020AD140
0,200	700	350	5,40	8,20	6,2	G1/8	10	1,150	P1V-S020AD070
0,200	320	160	12,00	18,00	6,2	G1/8	10	1,150	P1V-S020AD032
0,100	180	90	10,50	15,00	4,5	G1/8	10	1,150	P1V-S020AD018
0,180	50	25	20,00**	20,00**	6,2	G1/8	10	1,250	P1V-S020AD005
0,180	20	_	20,00**	20,00**	6,2	G1/8	10	1,250	P1V-S020AD002
0,180	10	_	20,00**	20,00**	6,2	G1/8	10	1,350	P1V-S020AD001
0,180	5	-	20,00**	20,00**	6,2	G1/8	10	1,350	P1V-S020AD0005

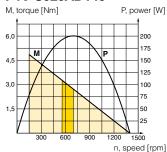
^{**} Max permitted torque to not damage the gearbox.

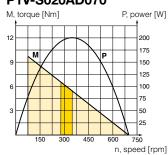

The P1V-S020D with threaded shaft may be reversed, but when operated anticlockwise, there is a risk that the driven unit may disconnect if it is not locked properly.

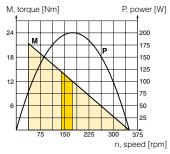

Optimum working range of

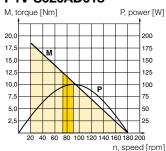
motor.
Higher speeds = more vane wear
Lower speeds with high torque =
more gearbox wear

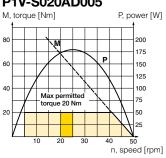

P1V-S020ADE50

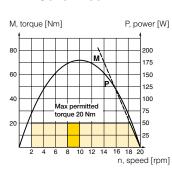

P1V-S020AD460

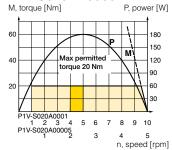

P1V-S020AD240


P1V-S020AD140


P1V-S020AD070


P1V-S020AD032


P1V-S020AD018

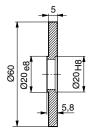

P1V-S020AD005

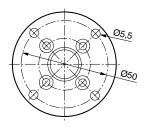
P1V-S020AD002



P1V-S020AD001 & P1V-S020AD0005

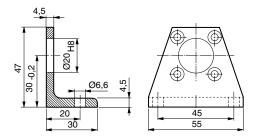
^{*} maximum admissible speed (idling)


Brake motor P1V-S020



		_
	Α	В
P1V-S020ADE50	170	63,5
P1V-S020AD460	170	63,5
P1V-S020AD240	170	63,5
P1V-S020AD140	186	79,5
P1V-S020AD070	186	79,5
P1V-S020AD032	186	79,5
P1V-S020AD018	186	79,5
P1V-S020AD005	202	95,5
P1V-S020AD002	202	95,5
P1V-S020AD001	218	111,5
P1V-S020AD0005	218	111,5

Flange


P1V-S4020B

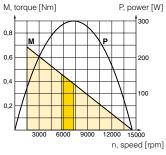
Foot bracket

P1V-S4020F

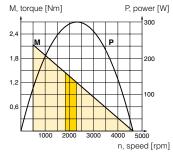
P1V-S - Stainless Steel Air Motors with Brakes

NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

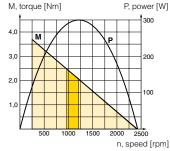
IMPORTANT! Non Atex certified

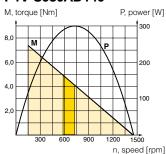

Data for reversible brake motor with keyed shaft, P1V-S030AD series

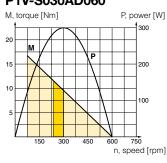
Max power	Free speed*	Nominal speed	Nominal torque	Min start torque Nm	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
KVV	rpm	rpm	INITI	INITI	1/5		mm	Kg	
0,300	14500	7250	0,40	0,60	8,0	G1/4	10	1,350	P1V-S030ADE50
0,300	4600	2300	1,20	1,90	8,0	G1/4	10	1,400	P1V-S030AD460
0,300	2400	1200	2,40	3,60	8,0	G1/4	10	1,400	P1V-S030AD240
0,300	1400	700	4,10	6,10	8,0	G1/4	10	1,450	P1V-S030AD140
0,300	600	300	9,60	14,30	8,0	G1/4	10	1,500	P1V-S030AD060
0,300	340	170	16,90	25,30	8,0	G1/4	10	1,500	P1V-S030AD034
0,300	230	115	24,00	36**	8,0	G1/4	10	3,650	P1V-S030AD023
0,130	180	90	13,80	21,00	4,7	G1/4	10	1,150	P1V-S030AD018
0,300	100	50	57,00	85,50	8,0	G1/4	10	3,650	P1V-S030AD010
0,280	50	25	36**	36**	8,0	G1/4	10	1,600	P1V-S030AD005

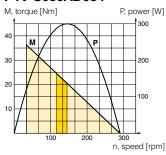

^{**} Max permitted torque to not damage the gearbox.

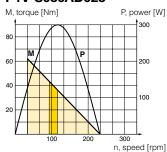
The P1V-S030D with threaded shaft may be reversed, but when operated anticlockwise, there is a risk that the driven unit may disconnect if it is not locked properly.

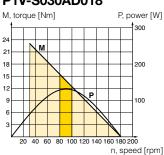

P1V-S030ADE50

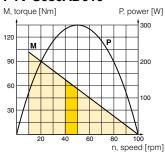

P1V-S030AD460

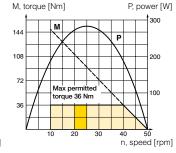

P1V-S030AD240


P1V-S030AD140


P1V-S030AD060


P1V-S030AD034


P1V-S030AD023

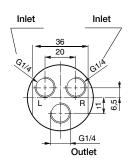

P1V-S030AD018

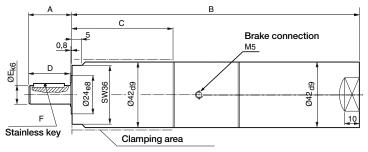
P1V-S030AD010

P1V-S030AD005

Possible working range of motor.

Optimum working range of motor.


^{*} maximum admissible speed (idling)

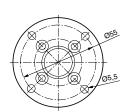

P1V-S030A

with shaft with keyed shaft

Dimensions (mm)

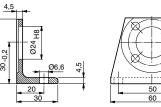
Brake motor P1V-S030

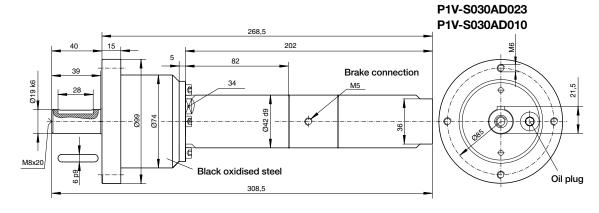



P1V-S030D with threaded shaft

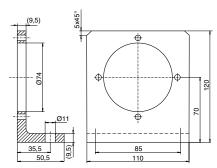
	Α	В	С	D	E	F
P1V-S030ADE50	28,5	186	66	27	12	A4x4x20 DIN 6885
P1V-S030AD460	28,5	186	66	27	12	A4x4x20 DIN 6885
P1V-S030AD240	28,5	186	66	27	12	A4x4x20 DIN 6885
P1V-S030AD140	28,5	202	82	27	12	A4x4x20 DIN 6885
P1V-S030AD060	32,0	202	82	30	14	A5x5x20 DIN 6885
P1V-S030AD034	32,0	202	82	30	14	A5x5x20 DIN 6885
P1V-S030AD018	32,0	202	82	30	14	A5x5x20 DIN 6885
P1V-S030AD005	32,0	207	82	30	14	A5x5x20 DIN 6885

Flange


P1V-S4030B



Foot bracket


P1V-S4030F

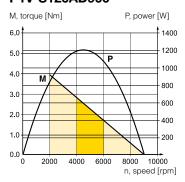
Foot bracket for motors P1V-S030AD0023 and P1V-S030AD0010

P1V-S - Stainless Steel Air Motors with Brakes

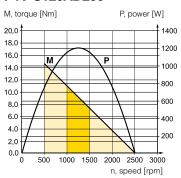
NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower.

Data tolerance accuracy -+10%

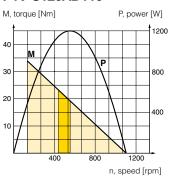
IMPORTANT! Non Atex certified

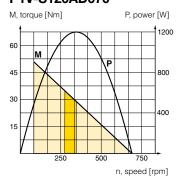


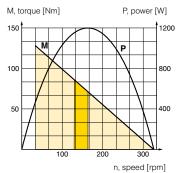
Data for reversible brake motor with keyed shaft, P1V-S120AD series


Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
1,200	9000	4500	2,50	3,80	26,7	G3/4	19	9,000	P1V-S120AD900
1,200	2500	1250	9,20	13,70	26,7	G3/4	19	9,200	P1V-S120AD250
1,200	1100	550	21,00	31,00	26,7	G3/4	19	9,200	P1V-S120AD110
1,200	700	350	33,00	49,00	26,7	G3/4	19	9,700	P1V-S120AD070
1,200	320	160	71,00	107,00	26,7	G3/4	19	9,700	P1V-S120AD032

^{*} maximum admissible speed (idling)

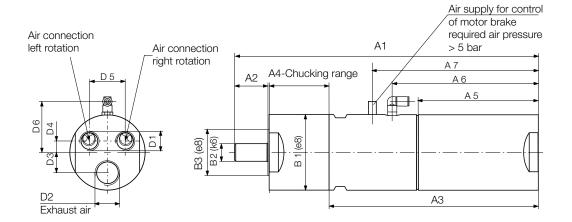

P1V-S120AD900

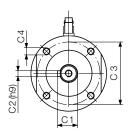

P1V-S120AD250


P1V-S120AD110

P1V-S120AD070

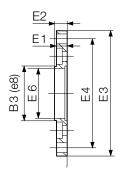
P1V-S120AD032

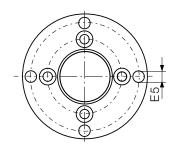

Possible working range of motor.



Optimum working range of motor.

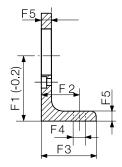
Brake motor P1V-S120

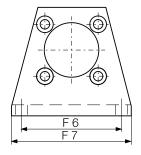




	Α	В	С	D	E	F
P1V-S120AD900	28,5	186	66	27	12	A4x4x20 DIN 6885
P1V-S120AD250	28,5	186	66	27	12	A4x4x20 DIN 6885
P1V-S120AD110	28,5	186	66	27	12	A4x4x20 DIN 6885
P1V-S120AD070	28,5	202	82	27	12	A4x4x20 DIN 6885
P1V-S120AD032	32,0	202	82	30	14	A5x5x20 DIN 6885

Flange


P1V-S4120B



Foot bracket

P1V-S4120F

Air Motors

P1V-S, Stainless Steel High Torque Type 285, 570 & 860 Watts

Contents	Page
Technical data	49
Material specification	49
Stainless Steel High Torque Air Motors P1V-S 285 W	50
Dimensions	51
Stainless Steel High Torque Air Motors P1V-S 570 W	
Dimensions	53
Stainless Steel High Torque Air Motors P1V-S 860 W	
Dimensions	55
Mountings	56
Lubrication and service life	
Service kits	58 - 59
Introduction to the ATEX directive	60 - 64

Technical data

Air motor size & type	P1V-S028	P1V-S057	P1V-S086		
Nominal power (watts)	285	570	860		
Working pressure (bar)	3 to 7, 6 in exp	losive atmosphere (high torque no	ot atex certified)		
Working temperature (°C)		-20 to +110			
Ambient temperature (°C)	-20 to +40 in exp	olosive atmosphere (high torque r	not atex certified)		
Air flow required (NI/min)	470	850	1400		
Min pipe ID, inlet (mm)	10	12	12		
Min pipe ID, outlet (mm)	10	12	12		

Choice of treatment unit: recommended min air flow (I/min) at p1 7.5 bar and 0.8 bar pressure drop

	510	900	1500				
Medium	40µm filtered, oil mist or dry unlubricated compressed air						
Oil free operation, indoor		ISO8573-1 purity class 3.4.1					
Oil free operation, outdoor	ISO8573-1 purity class 1.2.1						
Oil operation	1-2 drop per cube meter, ISO8573-1 purity class 35						
Recommended oil	Food	dstuffs industry Klüber oil 4 UH1-	32 N				

Choice of valve: recommended min nominal air flow (I/min) at p1 6 bar and 1 bar pressure drop

	550	950	1600
Sound level free outlet (dB(A))	103	103	106
With outlet silencer (dB(A))	91	94	88
Exhaust air removed with pipes to another room	70	76	80

Note: sound levels are measured at free speed with the measuring instrument positioned 1 meter away from the air motor at an height of 1 meter.

Table and diagram data

All technical data are based on a working pressure of 6 bar and with oil. Oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

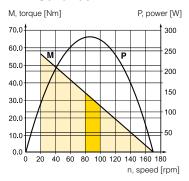
Material specification

Air motor size & type	P1V-S028	P1V-S057	P1V-S086				
Planetary gearbox housing		Stainless steel					
Air motor housing		Stainless steel					
Shaft	Hardened stainless steel						
Key	Hardened stainless steel						
External seal Fluor rubber		Fluor rubber FPM					
Internal steel parts		High grade steel (not stainless)					
Planetary gear grease used in	Grease, Shell Cassida RLS2						
Screws in housing in last planet stage	Surface treated steel (not stainless)						

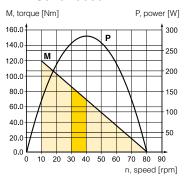
Accessories	P1V
Flange bracket	Stainless steel
Foot bracket	Stainless steel
Screws for the mountings	Stainless steel DIN A2

The high torque motors of the P1V-S type are small in size but provide extremely high output. Our high torque motors are also less apt to stall. These drive solutions are particularly suitable for use in industrial agitators and mixers as used in the paint industry, food industry or pharmaceutical industry.

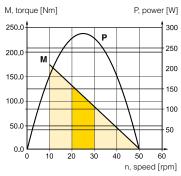
NOTE! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

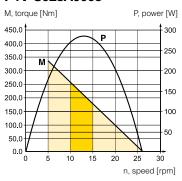

(((80 °C) X

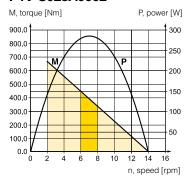
Data for reversible air motor with keyed shaft, P1V-S028A series


Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,285	170	85	32	47	7,8	G3/8	10	2,700	P1V-S028A0017
0,285	80	40	62	92	7,8	G3/8	10	2,600	P1V-S028A0008
0,285	50	25	110	162	7,8	G3/8	10	2,900	P1V-S028A0005
0,280	26	13	210	320	7,8	G3/8	10	3,500	P1V-S028A0003
0,280	14	7	410	615	7,8	G3/8	10	3,500	P1V-S028A0002

^{*} maximum admissible speed (idling)

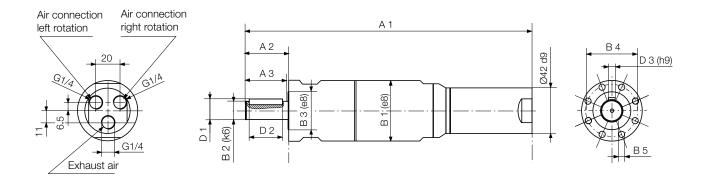

P1V-S028A0017


P1V-S028A0008

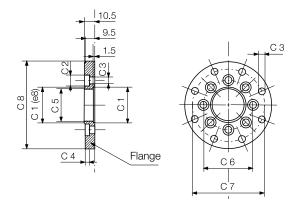

P1V-S028A00005

P1V-S028A0003

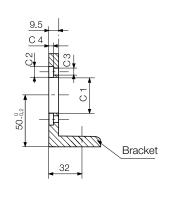
P1V-S028A0002

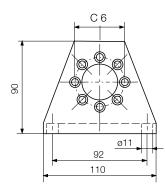

Possible working range of motor.

Optimum working range of motor.

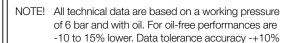


High Torque Motor P1V-S028


	A1	A2	A 3	D1	D2	D3 (h9)	B1 (e8)	B2 (k6)	В3	B4	B 5
P1V-S028A0017	254	44	42	21.5	32	A6x6x32 DIN6885	56	19	35	48	M6
P1V-S028A0008	254	44	42	21.5	32	A6x6x32 DIN6885	56	19	35	48	M6
P1V-S028A0005	270	44	42	21.5	32	A6x6x32 DIN6885	56	19	35	48	M6
P1V-S028A0003	270	47	45	27	32	A6x6x32 DIN6885	63	24	34	45	M8
P1V-S028A0002	279	47	45	27	32	A6x6x32 DIN6885	63	24	34	45	M8

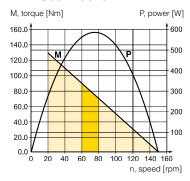

Flange P1V-S4028B1 & B2

Foot bracket

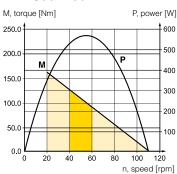

P1V-S4028F1 & F2

	C1 (e8)	C2	СЗ	C4	C5	C6	C 7	C8
P1V-S028F1	35	11	6.6	4		48		
P1V-S028F2	34	13	8.4	5		45		
P1V-S028B1	35	11	6.6	4	32	48	70	85
P1V-S028B2	34	13	8.4	5	30	45	79	95

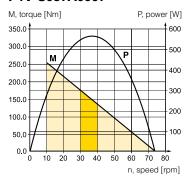
The high torque motors of the P1V-S type are small in size but provide extremely high output. Our high torque motors are also less apt to stall. These drive solutions are particularly suitable for use in industrial agitators and mixers as used in the paint industry, food industry or pharmaceutical industry.

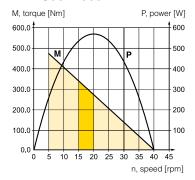


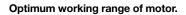
Data for reversible air motor with keyed shaft, P1V-S057A series


Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	I/s		mm	Kg	
0,570	150	75	72	108	14,2	G1/2	10	3,600	P1V-S057A0015
0,570	110	55	98	147	14,2	G1/2	10	3,600	P1V-S057A0011
0,570	74	37	150	225	14,2	G1/2	10	3,600	P1V-S057A0007
0,565	40	20	265	400	14,2	G1/2	10	4,400	P1V-S057A0004

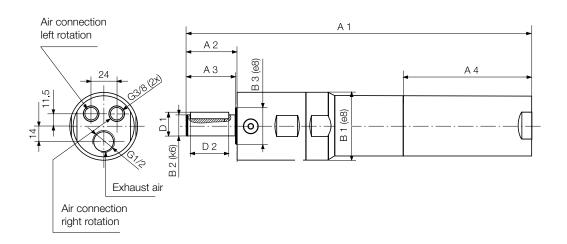
^{*} maximum admissible speed (idling)


P1V-S057A0015


P1V-S057A0011

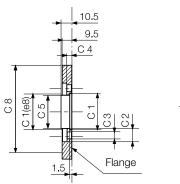

P1V-S057A0007

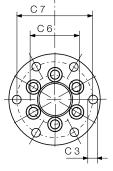
P1V-S057A0004


Possible working range of motor.

Dimensions (mm)

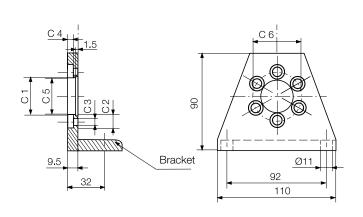
High Torque Motor P1V-S057



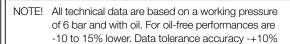


	A 1	A2	A3	A4	D1	D3 (h9)	D2	B1 (e8)	B2 (k6)	B3 (e8)	B4	B 5
P1V-S057A0015	283.5	44	42	98.5	21.5	A6x6x32 DIN6885	32	56	19	35	48	M6
P1V-S057A0011	283.5	44	42	98.5	21.5	A6x6x32 DIN6885	32	56	19	35	48	M6
P1V-S057A0007	283.5	44	42	98.5	21.5	A6x6x32 DIN6885	32	56	19	35	48	M6
P1V-S057A0004	347	47	45	98.5	27	A6x6x32 DIN6885	32	63	24	34	45	M8

Flange


P1V-S4028B1 & B2

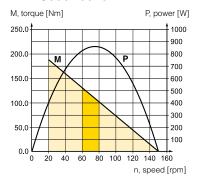
Foot bracket


P1V-S4028F1 & F2

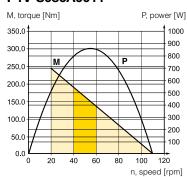
	C1 (e8)	C2	C3	C4	C 5	C6	C7	C 8
P1V-S028F1	35	11	6.6	4		48		
P1V-S028F2	34	13	8.4	5		45		
P1V-S028B1	35	11	6.6	4	32	48	70	85
P1V-S028B2	34	13	8.4	5	30	45	79	95

P1V-S - Stainless Steel High Torque Air Motors

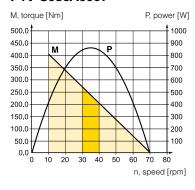
The high torque motors of the P1V-S type are small in size but provide extremely high output. Our high torque motors are also less apt to stall. These drive solutions are particularly suitable for use in industrial agitators and mixers as used in the paint industry, food industry or pharmaceutical industry.

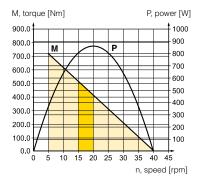


Data for reversible air motor with keyed shaft, P1V-S086A series


Max power	Free speed*	Nominal speed	Nominal torque	Min start torque	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm	rpm	Nm	Nm	l/s		mm	Kg	
0,860	150	75	160	110	23,3	G1/2	10	3,800	P1V-S086A0015
0,860	110	55	220	150	23,3	G1/2	10	3,900	P1V-S086A0011
0,860	70	35	335	225	23,3	G1/2	10	3,900	P1V-S086A0007
0,850	40	20	600	400	23,3	G1/2	10	4,700	P1V-S086A0004

^{*} maximum admissible speed (idling)

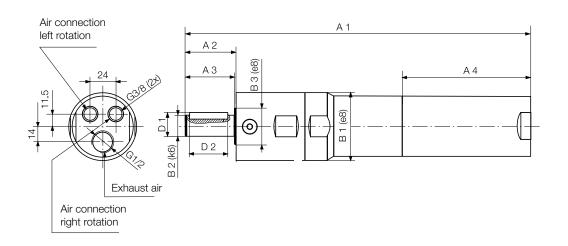

P1V-S086A0015

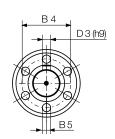

P1V-S086A0011

P1V-S086A0007

P1V-S086A0004

Possible working range of motor.


Optimum working range of motor.


Higher speeds = more vane wear Lower speeds with high torque = more gearbox wear

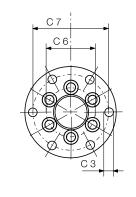
Dimensions (mm)

High Torque Motor P1V-S086

	A1	A2	A3	A4	D1	D3 (h9)	D2	B1 (e8)	B2 (k6)	B3 (e8)	B4	B 5
P1V-S086A0015	303.5	44	42	118.5	21.5	A6x6x32 DIN6885	32	56	19	35	48	M6
P1V-S086A0011	303.5	44	42	118.5	21.5	A6x6x32 DIN6885	32	56	19	35	48	M6
P1V-S086A0007	303.5	44	42	118.5	21.5	A6x6x32 DIN6885	32	56	19	35	48	M6
P1V-S086A0004	320	47	45	98.5	27	A6x6x32 DIN6885	32	63	24	34	45	M8

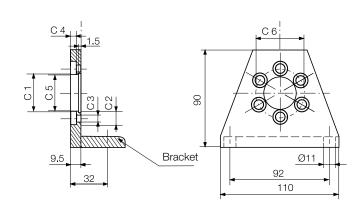
C 8

Flange P1V-S4028B1 & B2


10.5

9.5

Flange


_C 4

1.5

Foot bracket

P1V-S4028F1 & F2

	C1 (e8)	C2	C3	C4	C5	C6	C7	C8
P1V-S028F1	35	11	6.6	4		48		
P1V-S028F2	34	13	8.4	5		45		
P1V-S028B1	35	11	6.6	4	32	48	70	85
P1V-S028B2	34	13	8.4	5	30	45	79	95

Mountings for P1V-S air motors

Туре	For air motor	Weight Kg	Order code
Flange			
	P1V-S002 & P1V-S003	0,04	P1V-S4002B
The second second	P1V-S008	0,04	P1V-S4008B
	P1V-S012	0,05	P1V-S4012B
1.50	P1V-S020	0,09	P1V-S4020B
	P1V-S028 high torque	0,10	P1V-S4028B1
	P1V-S028 high torque	0,10	P1V-S4028B2
	P1V-S030	0,12	P1V-S4030B
	P1V-S057 high torque	0,30	P1V-S4028B1
	P1V-S057 high torque	0,30	P1V-S4028B2
	P1V-S060 & P1V-S090	0,30	P1V-S4060B
	P1V-S086 high torque	0,30	P1V-S4028B1
	P1V-S086 high torque	0,30	P1V-S4028B2
	P1V-S120	0,60	P1V-S4120B
Foot bracket			
	P1V-S008	0,08	P1V-S4008F
3	P1V-S012	0,09	P1V-S4012F
	P1V-S020	0,11	P1V-S4020F
6	P1V-S028 high torque	0,11	P1V-S4028F1
	P1V-S028 high torque	0,11	P1V-S4028F2
	P1V-S030A0023	0,55	P1V-S4020C
	P1V-S030A0010	0,55	P1V-S4020C
	P1V-S030	0,11	P1V-S4030F
	P1V-S057 high torque	0,30	P1V-S4028F1
	P1V-S057 high torque	0,30	P1V-S4028F2
	P1V-S060 & P1V-S090	0,30	P1V-S4060F
	P1V-S086 high torque	0,30	P1V-S4028F1
	P1V-S086 high torque	0,30	P1V-S4028F2
	P1V-S120	0,80	P1V-S4120F

All brackets supplied with fastening screws for the motor.

Lubrication and service life

The first service is due after approximately 500 hours of operation. After the first service, the service interval is determined by the degree of vane wear*. The table below shows new dimensions and the minimum dimensions of worn vanes.

Air motor	Dimension	s on new van	es X (mm), ty	pe of vanes
	Standard	Z	С	М
P1V-S002	3,3	-	-	-
P1V-S003	Χ	-	-	-
P1V-S008	4,3	-	-	-
P1V-S012	4,2	4,2	4,2	4,2
P1V-S020	6,5	6,0	6,0	6,0
P1V-S028	Χ	Χ	Χ	Χ
P1V-S030	6,8	6,2	6,8	6,2
P1V-S057	Χ	Χ	Χ	Χ
P1V-S060	9,0	9,0	9,0	9,0
P1V-S086	Χ	X	Χ	Χ
P1V-S090	X	Χ	X	Χ
P1V-S120	14,7	14,0	14,0	14,0

Air motor	Dimensi	ons on vanes	X (mm), type	of vanes
	Standard	Z	С	М
P1V-S002	3,0	-	-	-
P1V-S003	Χ	-	-	-
P1V-S008	4,0	-	-	-
P1V-S012	3,3	3,3	3,3	3,3
P1V-S020	5,8	5,3	5,3	5,3
P1V-S028	Χ	Χ	Χ	Χ
P1V-S030	6,0	5,2	6,0	5,2
P1V-S057	Χ	Χ	Χ	Χ
P1V-S060	6,0	6,0	6,0	6,0
P1V-S086	Χ	X	X	Χ
P1V-S090	X	X	X	X
P1V-S120	14,2	13,5	13,5	13,5

The following normal service intervals should be applied to in order to guarantee problem-free operation in air motors working continuously at load speeds.

Intermittent lubrication-free operation of motors with standard vanes, option 0

Duty cycle: 70%
Max. duration of intermittent use: 15 minutes

Filtering 40 µm : 750 hours of operation* Filtering 5 µm : 1,000 hours of operation*

Continuous lubricated operation of motors with standard vanes, option 0

 $\begin{array}{lll} \text{Duty cycle:} & \text{Continuous} \\ \text{Quantity of oil:} & \text{1 drop per m}^3 \text{ of air} \\ \text{Filtering 40 } \mu\text{m:} & \text{1,000 hours of operation*} \\ \text{Filtering 5 } \mu\text{m:} & \text{2,000 hours of operation*} \end{array}$

Note! After 1000 hours of operation, the grease in the planetary gearbox must be changed

Continuous lubrication-free operation of motors equipped with vanes, option C

Duty cycle: Continuous

Filtering 40 µm: 750 hours of operation* Filtering 5 µm: 1,000 hours of operation*

* The specified hours of operation apply when the motor is running at the speed corresponding to maximum power (load speed).

This is approximately half free speed. If the motor operates at higher speeds, the service interval is shorter. If the motor operates at lower speeds, the service interval is longer.

Service kits

The following kits are available for the basic motors, consisting of vanes, (springs), silencers, O-rings, seals and 50 g of grease. (USDA-H1 approved)

Optional function "0" and "D"

Service kits, vanes for intermittent lubrication-free operation

For motors		Order code
P1V-S002A		P1V-6/446083A
P1V-S003A		P1V-6/446083A
P1V-S008A		P1V-6/446084A
P1V-S012A0 / D0	(to serial no 948688)	9121720601
P1V-S012A0 / D0	(from serial no 948689)	9121720636
P1V-S020A• / D•		9121720602
P1V-S030A • / D •		9121720603
P1V-S060A0E00		9121720604
P1V-S060A0400		9121720604
P1V-S060A0350		9121720604
P1V-S060A0270		9121720604
P1V-S060A0170		9121720604
P1V-S060A0072		9121720604
P1V-S060A0063		9121720604
P1V-S060A0048		9121720605
P1V-S060A0030		9121720605
P1V-S060A0015		9121720605
P1V-S060A0010		9121720605
P1V-S090A0C00		P1V-6/444919A
P1V-S090A0350		P1V-6/444919A
P1V-S090A0270		P1V-6/444919A
P1V-S090A0170		P1V-6/444919A
P1V-S090A0063		P1V-6/444919A
P1V-S090A0048		P1V-6/444919B
P1V-S090A0030		P1V-6/444919B
P1V-S120A•800		9121720606
P1V-S120A•270		9121720606
P1V-S120A•110		9121720606
P1V-S120A•078		9121720607
P1V-S120A • 032		9121720607
P1V-S120A•012		9121720607

Optional function "C" and "E"

Service kits, vanes for continuous lubrication-free operation

For motors		Order code
P1V-S012AC / DC	(to serial no 948688)	9121720608
P1V-S012AC / DC	(from serial no 948689)	9121720637
P1V-S020A• / D•		9121720609
P1V-S030A• / D•		9121720610
P1V-S060ACE00		9121720611
P1V-S060AC400		9121720611
P1V-S060AC350		9121720611
P1V-S060AC270		9121720611
P1V-S060AC170		9121720611
P1V-S060AC072		9121720611
P1V-S060AC063		9121720611
P1V-S060AC048		9121720612
P1V-S060AC030		9121720612
P1V-S060AC015		9121720612
P1V-S060AC010		9121720612
P1V-S090ACC00		On request
P1V-S090AC350		On request
P1V-S090AC270		On request
P1V-S090AC170		On request
P1V-S090AC063		On request
P1V-S090AC048		On request
P1V-S090AC030		On request
P1V-S120A•800		9121720613
P1V-S120A•270		9121720613
P1V-S120A•110		9121720613
P1V-S120A•078		9121720614
P1V-S120A•032		9121720614
P1V-S120A•012		9121720614

• : 0 or D, C or E

Service kits for high torque motors

For motors	Order code
P1V-S028A0017	P1V-6/4447861B
P1V-S028A0008	P1V-6/4447861B
P1V-S028A0005	P1V-6/4447861B
P1V-S028A0003	P1V-6/4447861C
P1V-S028A0002	P1V-6/4447861C
P1V-S057A0015	P1V-6/4447871D
P1V-S057A0011	P1V-6/4447871D
P1V-S057A0007	P1V-6/4447871D
P1V-S057A0004	P1V-6/4447871E
P1V-S086A0015	P1V-6/4449191C
P1V-S086A0011	P1V-6/4449191C
P1V-S086A0007	P1V-6/4449191C
P1V-S086A0004	P1V-6/4449191D

Service kits

The following kits are available for the basic motors, consisting of vanes, (springs), silencers, O-rings, seals and 50 g of grease. (USDA-H1 approved)

Optional function "Z" and "F"

Service kits, spring-loaded vanes for intermittent lubrication-free operation

	-	
For motors		Order code
P1V-S012AZ/DZ	(to serial no 948688)	9121720615
P1V-S012AZ / DZ	(from serial no 948689)	9121720638
P1V-S020A•/D•		9121720616
P1V-S030A•/D•		9121720617
P1V-S060AZE00		9121720618
P1V-S060AZ400		9121720618
P1V-S060AZ350		9121720618
P1V-S060AZ270		9121720618
P1V-S060AZ170		9121720618
P1V-S060AZ072		9121720618
P1V-S060AZ048		9121720619
P1V-S060AZ072		9121720619
P1V-S060AZ063		9121720619
P1V-S060AZ010		9121720619
P1V-S090AZC00		On request
P1V-S090AZ350		On request
P1V-S090AZ270		On request
P1V-S090AZ170		On request
P1V-S090AZ063		On request
P1V-S090AZ048		On request
P1V-S090AZ030		On request
P1V-S120A•800		9121720620
P1V-S120A•270		9121720620
P1V-S120A•110		9121720620
P1V-S120A•078		9121720621
P1V-S120A • 032		9121720621
P1V-S120A•012		9121720621

• : Z or F, M or G

Optional function "M" and "G"

Service kits, spring-loaded vanes for continuous lubrication-free operation

P1V-S012AM / DM (to serial no 948688) 9121720622 P1V-S012AM / DM (from serial no 948689) 9121720639 P1V-S020A	For motors		Order code
P1V-S020A● / D● 9121720623 P1V-S030A● / D● 9121720624 P1V-S060AME00 9121720625 P1V-S060AM400 9121720625 P1V-S060AM270 9121720625 P1V-S060AM170 9121720625 P1V-S060AM072 9121720625 P1V-S060AM072 9121720626 P1V-S060AM030 9121720626 P1V-S060AM030 9121720626 P1V-S090AMC00 On request P1V-S090AM270 On request P1V-S090AM270 On request P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM088 On request P1V-S090AM089 On request P1V-S090AM080 On request P1V-S090AM080 On request P1V-S090AM081 On request P1V-S090AM081 On request P1V-S090AM082 On request P1V-S120A●800 9121720627 P1V-S120A●800 9121720627 P1V-S120A●078 9121720628 P1V-S120A●032 9121720628	P1V-S012AM / DM	(to serial no 948688)	9121720622
P1V-S030A● / D● 9121720624 P1V-S060AME00 9121720625 P1V-S060AM400 9121720625 P1V-S060AM270 9121720625 P1V-S060AM170 9121720625 P1V-S060AM072 9121720625 P1V-S060AM030 9121720626 P1V-S060AM030 9121720626 P1V-S060AM010 9121720626 P1V-S090AMC00 On request P1V-S090AM270 On request P1V-S090AM270 On request P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM088 On request P1V-S090AM089 On request P1V-S090AM080 On request P1V-S090AM080 On request P1V-S120A●800 9121720627 P1V-S120A●110 9121720627 P1V-S120A●078 9121720628 P1V-S120A●032 9121720628	P1V-S012AM / DM	(from serial no 948689)	9121720639
P1V-S060AME00 9121720625 P1V-S060AM400 9121720625 P1V-S060AM270 9121720625 P1V-S060AM170 9121720625 P1V-S060AM072 9121720625 P1V-S060AM072 9121720626 P1V-S060AM030 9121720626 P1V-S060AM010 9121720626 P1V-S090AMC00 On request P1V-S090AM270 On request P1V-S090AM270 On request P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM063 On request P1V-S090AM080 On request P1V-S090AM080 On request P1V-S120A•800 9121720627 P1V-S120A•110 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S020A• / D•		9121720623
P1V-S060AM400 9121720625 P1V-S060AM270 9121720625 P1V-S060AM170 9121720625 P1V-S060AM072 9121720625 P1V-S060AM072 9121720626 P1V-S060AM030 9121720626 P1V-S060AM010 9121720626 P1V-S090AMC00 On request P1V-S090AM270 On request P1V-S090AM270 On request P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM063 On request P1V-S090AM080 On request P1V-S090AM080 On request P1V-S120A•800 9121720627 P1V-S120A•110 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S030A• / D•		9121720624
P1V-S060AM270 9121720625 P1V-S060AM170 9121720625 P1V-S060AM072 9121720625 P1V-S060AM072 9121720626 P1V-S060AM030 9121720626 P1V-S060AM010 9121720626 P1V-S090AMC00 On request P1V-S090AM350 On request P1V-S090AM350 On request P1V-S090AM170 On request P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM063 On request P1V-S090AM080 On request P1V-S120A•800 9121720627 P1V-S120A•270 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S060AME00		9121720625
P1V-S060AM170 9121720625 P1V-S060AM072 9121720625 P1V-S060AM048 9121720626 P1V-S060AM030 9121720626 P1V-S090AM010 9121720626 P1V-S090AMC00 On request P1V-S090AM350 On request P1V-S090AM270 On request P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM088 On request P1V-S090AM080 On request P1V-S120A•800 9121720627 P1V-S120A•270 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S060AM400		9121720625
P1V-S060AM072 9121720625 P1V-S060AM030 9121720626 P1V-S060AM010 9121720626 P1V-S090AMC00 On request P1V-S090AM350 On request P1V-S090AM270 On request P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM048 On request P1V-S120A•800 9121720627 P1V-S120A•270 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S060AM270		9121720625
P1V-S060AM048 9121720626 P1V-S060AM030 9121720626 P1V-S060AM010 9121720626 P1V-S090AMC00 On request P1V-S090AM350 On request P1V-S090AM270 On request P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM063 On request P1V-S090AM088 On request P1V-S090AM030 On request P1V-S120A•800 9121720627 P1V-S120A•270 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S060AM170		9121720625
P1V-S060AM030 9121720626 P1V-S060AM010 9121720626 P1V-S090AMC00 On request P1V-S090AM350 On request P1V-S090AM270 On request P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM048 On request P1V-S120A•800 9121720627 P1V-S120A•270 9121720627 P1V-S120A•110 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S060AM072		9121720625
P1V-S060AM010 P1V-S090AMC00 On request P1V-S090AM350 On request P1V-S090AM270 On request P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM063 On request P1V-S090AM048 On request P1V-S090AM030 On request P1V-S120A•800 P1Z1720627 P1V-S120A•270 P1V-S120A•110 P1Z1720627 P1V-S120A•078 P1V-S120A•032 P1Z1720628 P1V-S120A•032	P1V-S060AM048		9121720626
P1V-S090AMC00 On request P1V-S090AM350 On request P1V-S090AM270 On request P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM063 On request P1V-S090AM048 On request P1V-S090AM030 On request P1V-S120A•800 9121720627 P1V-S120A•270 9121720627 P1V-S120A•110 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S060AM030		9121720626
P1V-S090AM350 On request P1V-S090AM270 On request P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM063 On request P1V-S090AM048 On request P1V-S090AM030 On request P1V-S120A•800 9121720627 P1V-S120A•270 9121720627 P1V-S120A•110 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S060AM010		9121720626
P1V-S090AM270 On request P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM063 On request P1V-S090AM030 On request P1V-S120A•800 9121720627 P1V-S120A•270 9121720627 P1V-S120A•110 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S090AMC00		On request
P1V-S090AM170 On request P1V-S090AM063 On request P1V-S090AM048 On request P1V-S090AM030 On request P1V-S120A•800 P121720627 P1V-S120A•270 P1V-S120A•110 P121720627 P1V-S120A•078 P1V-S120A•078 P1V-S120A•032 P121720628	P1V-S090AM350		On request
P1V-S090AM063 On request P1V-S090AM048 On request P1V-S090AM030 On request P1V-S120A•800 9121720627 P1V-S120A•270 9121720627 P1V-S120A•110 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S090AM270		On request
P1V-S090AM048 On request P1V-S090AM030 On request P1V-S120A•800 9121720627 P1V-S120A•270 9121720627 P1V-S120A•110 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S090AM170		On request
P1V-S090AM030 On request P1V-S120A•800 9121720627 P1V-S120A•270 9121720627 P1V-S120A•110 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S090AM063		On request
P1V-S120A•800 9121720627 P1V-S120A•270 9121720627 P1V-S120A•110 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S090AM048		On request
P1V-S120A•270 9121720627 P1V-S120A•110 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S090AM030		On request
P1V-S120A•110 9121720627 P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S120A•800		9121720627
P1V-S120A•078 9121720628 P1V-S120A•032 9121720628	P1V-S120A•270		9121720627
P1V-S120A•032 9121720628	P1V-S120A•110		9121720627
	P1V-S120A•078		9121720628
P1V-S120A•012 9121720628	P1V-S120A•032		9121720628
	P1V-S120A•012		9121720628

Service kits for brake module for motors with brakes

For motors	Order code
P1V-S020AD and P1V-S030AD	P1V-6/446096A
P1V-S120AD	P1V-6/4460961B

Comment: To perform a full service on a brake motor, you will need a normal service kit as well as a service kit for the brake module.

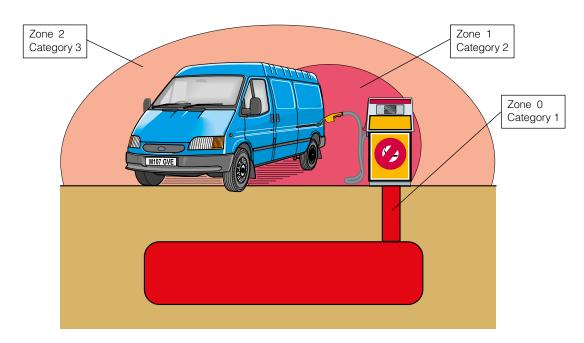
Introduction to the ATEX directive Explosive atmospheres

Directive 94/9/EC defines an explosive atmosphere as a mixture of:

- a) flammable substances gases, vapours, mists or dusts
- b) with air
- c) under specific atmospheric conditions
- d) in which, after ignition has occurred, combustion spreads to the entire flammable mixture

(NB: with regard to dust, it may be that not all dust is combusted after ignition has occurred)

An atmosphere with the potential to become an explosive atmosphere during operating conditions and/or under the influence of the surroundings is defined as a **potentially explosive atmosphere**. Products covered by directive 94/9/EC are defined as intended for use in potentially explosive atmospheres.


Harmonised European ATEX standard

The European Union has adopted two harmonised directives in the field of health and safety. The directives are known as ATEX 100a and ATEX 137.

Directive ATEX 100a (94/9/EC) lays down minimum safety requirements for products intended for use in potentially explosive atmospheres in European Union member states. Directive ATEX 137 (99/92/EC) defines minimum requirements for health and safety at the workplace, for working conditions and for the handling of products and materials in potentially explosive atmospheres. This directive also divides the workplace into **zones** and defines criteria by which products are **categorised** within these zones.

The table below describes the **zones** in an installation where there is a potential for explosive atmospheres. The **owner** of the installation must analyse and assess the area in which the explosive gas/dust mixture may occur, and if necessary must divide it into **zones**. This process of zoning then allows the correct plant and equipment to be selected for use in the area.

The ATEX directive has been in force throughout the European Union

Zo	nes	Presence of potentially explosive atmosphere	Type of risk
Gas G	Dust D		
0	20	Present continuously or for long periods	Permanent
1	21	Likely to occur in normal operation occasionally	Potential
2	22	Not likely to occur in normal operation but, if it does occur, will persist for a short period only	Minimal

since 1 July 2003, replacing the existing divergent national and European legislation relating to explosive atmospheres. Please note that for the first time, the directive covers mechanical, hydraulic and pneumatic equipment and not just electrical equipment as before.

With regard to the Machinery directive 98/37/EC, note that a number

of external requirements in 94/9/EC refer to hazards arising from potentially explosive atmospheres, where the Machinery directive only contains general requirements relating to explosion safety (Annex I 1.5.7)

As a result, directive 94/9/EC (ATEX 100a) takes precedence over the Machinery directive with regard to explosion protection in potentially explosive atmospheres. The requirements in the Machinery directive are applicable to all other risks relating to machinery.

Levels of protection for the various equipment categories

The various equipment categories must be capable of operating in accordance with the manufacturer's operating specifications at defined levels of protection.

Level of protection	Cate Group I	gory Group II	Type of protection	Operating specifications
Very high	M1		Two independent means of protection or safety, ensuring that the equipment remains functional even in the event of two faults occurring independently of each other	The equipment remains energised and and functional even with an explosive atmosphere present
Very high		1	Two independent means of protection or safety, ensuring that the equipment remains functional even in the event of two faults occurring independently of each other	The equipment remains energised and functional in zones 0, 1, 2 (G) and/or zones 20, 21, 22 (D)
High	M2		Protection suitable for normal operation and severe operating conditions	The equipment is de-energised in the event of an explosive atmosphere
High		2	Protection suitable for normal operation and frequent faults, or equipment in which faults normally have to be taken into account	The equipment remains energised and functional in zones 1, 2 (G) and/or zones 21, 22 (D)
Normal		3	Protection suitable for normal operation	The equipment remains energised and functional in zones 2 (G) and/or zones 22 (D)

Definition of groups (EN 1127-1)

Group I Equipment intended for use in underground parts of mines as well as those parts of surface installations of such mines likely to be endangered by flammable vapours and/or flammable dusts.

Group II Equipment intended for use in other places exposed to explosive atmospheres.

Group	l mines, combustible vapours		II other potentially explosive atmospheres (gases, dust)						
Category	M1	M2	1		:	2	3		
Atmosphere*			G	D	G	D	G	D	
Zone			0	20	1	21	2	22	

G = gas and D = dust

Temperature classes

Classification of flammable gases and vapours on the basis of ignition temperature

Temperature class	Ignition temperature °C
T1	Over 450
T2	(300) – 450
T3	(200) – 300
T4	(135) – 200
T5	(100) – 135
T6	(85) - 100

Declaration of conformity

The product catalogues contain copies of the declaration of conformity demonstrating that the product meets the requirements of directive 94/9/FC

The declaration is only valid in conjunction with the instructions contained in the installation manual relating to the safe use of the product throughout its service life.

The instructions relating to the conditions in the surrounding area are particularly important, as the certificate is invalidated if the instructions are found not to have been adhered to during operation of the product. If there is any doubt as to the validity of the certificate of conformity, contact Parker Hannifin customer service.

Operation, installation and maintenance

The installation manual of the product contains instructions relating to the safe storage, handling, operation and servicing of the product. The manual is available in different languages, and can be downloaded from www.parker.com/euro_pneumatic.

This document must be made accessible in a suitable place near where the product is installed. It is used as a reference for all personnel authorised to work with the product throughout its service life.

We, the manufacturer, reserve the right to modify, extend or improve the installation manual in the interests of the users.

For more information about ATEX see EUs homepage: http://europa.eu.int/comm/enterprise/atex/

Additional safety instructions for installation in explosive atmospheres

Serious, even fatal, damage or injury may be caused by the hot moving parts of the P1V-S motors in the presence of explosive gas mixtures and concentrations of dust.

All installation, connection, commissioning, servicing and repair work on P1V-S motors must be carried out by qualified personnel taking account of the following

- · These instructions
- Notices on the motor
- All other planning documents, commissioning instructions and connection diagrams associated with the application.
- Provisions and requirements specific to the application
- Applicable national/international regulations (explosion protection, safety and accident prevention)

Real life applications

P1V-S motors are designed to provide rotary movement in industrial applications, and should only be used in accordance with the instructions in the technical specifications in the catalogue, and within the operating range indicated on the motor housing. The motors meet the applicable standards and requirements of the Machinery Directive 94/9/EC (ATEX)

The motors must not be used as brakes in explosive atmospheres.

Braking involves driving the motor against the direction of rotation for which the motor is supplied with compressed air. The motor is then operating as a compressor, and there is a corresponding increase in temperature.

The motors must **not** be used underground in mines susceptible to firedamp and/or combustible dust. The motors are intended for use in areas in which explosive atmospheres caused by gases, vapours or mists of combustible liquids, or air/dust mixtures may be expected to occur during normal use (infrequently)

Checklist

Before using the motors in a potentially explosive atmosphere, you should check the following:

Do the motor specifications match the classification of the area of use in accordance with Directive 94/9/EG (previously ATEX 100a)

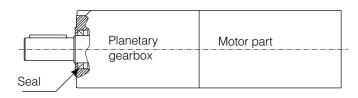
- Equipment group
- Equipment category
- Zone
- Temperature class
- Max. surface temperature
- 1. When installing the motor, is it certain that there is no potentially explosive atmosphere, oil, acids, gases, vapours or radiation?
- 2. Is the ambient temperature as specified in the technical data in the catalogue at all times?
- 3. Is it certain that the P1V-S motor is adequately ventilated and that no additional heat is added (for example in the shaft connection)?
- 4. Are all the driven mechanical components ATEX certified?

Installation requirements in potentially explosive atmospheres

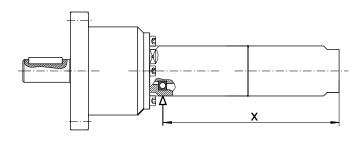
- The temperature of the supply air must not exceed the ambient temperature.
- The P1V-S may be installed in any position.
- An air treatment unit must be attached to the inlet of the P1V-S air motor.
- In a potentially explosive atmosphere, none of the motor ports may be blocked because this may cause an increase in temperature.
 The air from the port must be taken to the silencer or, preferably, outside the potentially explosive area.
- The P1V-S motor must be connected to ground at all times, through its support, a metallic tube or separate conductor.
- The outlet of the P1V-S motor must not open within a potentially explosive area, but must be passed to the silencer or, preferably, removed and released outside the potentially explosive area.
- The P1V-S motor may only drive units that are ATEX certified.
- Ensure that the motor is not exposed to forces greater than those permitted in accordance with the catalogue.

Measuring the temperature on the outside of the P1V-S motor (only when used in potentially explosive areas)

During the commissioning process, it is essential to measure temperature increases at the indicated positions on the outside of the P1V-S motor.

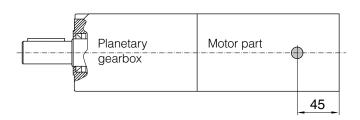

These measurements can be taken using standard thermometers.

Checking the motor during operation


The motor must be kept clean on the outside, and a layer of dirt thicker than 5 mm must never be allowed to form. Strong solvents should not be used for cleaning, because they can cause the seal (material NBR/FPM) around the drive shaft to swell, potentially increasing the temperature.

The temperature is measured on the metal surface next to the seal around the output shaft on all P1V-S012, P1V-S020, P1V-S028, P1V-S030, P1V-S057, P1V-S060, P1V-S086 and P1V-S090 motors.

Motors P1V-S030A0023 and P1V-S030A0010


Motor	x [mm]
P1V-S030A0023	146
P1V-S030A0010	147,5

The maximum temperature is reached after approximately 1,5 hours of operation, and the difference in temperature between the motor and the ambient temperature must not exceed 40 °C.

If the temperature difference at the seal of a P1V-S 120 to 900 watts exceeds 40 $^{\circ}$ C, you should stop the motor immediately and contact Parker Hannifin.

The following applies to the P1V-S120 series:

The temperature is measured on the metal surface at a point 45 mm from the port end of the motor housing, on all P1V-S120.

The maximum temperature is reached after approximately 1,5 hours of operation, and the difference in temperature between the motor and the ambient temperature must not exceed 55 °C.

If the temperature difference at this point on a P1V-S120 exceeds $55\,^{\circ}$ C, you should stop the motor immediately and contact Parker Hannifin.

Marking of products

For all P1V-S 120 to 900 watts

For the P1V-S120 1200 watts

Ce marking shows that as a manufacturer, Parker Hannifin meets the guidelines specified by the EU

Ex means that this product is intended for use in a potentially explosive area

stands for the equipment group (I = mines and II = other places liable to be endangered)

stands for equipment category
2G means the equipment can be used in zones 1 and 2 where there is a risk involving gas, vapour or mist of combustible liquids and 2D in zones 21 and 22 where there is a risk involving dust.

2GD means the equipment can be used in zones 1, 2, 21 and 22.

c Safe design (prEN 13463-5)

IIC Explosion group, P1V-S air motors are tested to the highest standards in terms of test gases, and can be installed in the presence of all gases without restriction.

If equipment is in temperature class **T6**, the maximum surface temperature must not exceed 85 °C. (To guarantee this, the product has been tested to ensure that the maximum is 80 °C. This provides a safety margin of 5 °K.)

T5 If equipment is in temperature class T5, the maximum surface temperature must not exceed 100 °C. (To guarantee this, the product has been tested to ensure that the maximum is 95 °C. This provides a safety margin of 5 °K.)

(80 °C) Maximum permitted surface temperature on the motor in atmospheres containing potentially explosive dust.

X Note special conditions

Test certificate number IBExU04ATEXB004 X from IBExU Institut für Sicherheitstechnik GmbH, D-09599 Freiberg, Germany

P1V-S Declaration of Conformity acc. ATEX 94/9/EC P1V=S Declaration of Great Provider act. TEX 94/9/EC May han Dectaration of the appropriation a c. EC

Machinery Directive 2006/42/EC We Parker Hannifin Manufacturing

> Germany GmbH & Co. KG Pneumatic Division Europe Industriestrasse 8

70794 Filderstadt Germany

Declare that the following Air Motors have been assessed in accordance with ATEX 94/9/EC (Products for use in potentially explosive atmospheres). Air Motors P1V-S012, P1V-S020, P1V-S030, P1V-S030, P1V-S057, P1V-S060, P1V-S086 and P1V-S090 range are compatible for the use in explosive atmosphere Ex II 2 GD c T6 (T80°C) X. Air Motors P1V-S120 range are compatible for the use in explosive atmosphere Ex II 2 GD c T5 (T95°C) X. All without brake option.

P1V-S is designed for utilization in applications falling under the scope of the ATEX 94/9/EC. These productions designed and manufactured in compliance with following elements:

- EN 1127-1:2007 Explosive atmospheres Explosion prevention and protection Part 1: Basic & cc, ts and
- EN 13463-1:2009 Non electrical equipment for use in potentially explosive atmosphere and requirements
- EN 13463-5 Non-electrical equipment intended for use in potentially explosive at res - Part 5: Protection by constructional safety 'c'
- EN 983+A1:2008 Safety of machinery Safety requirements for fluid power ems and their components -**Pneumatics**

As manufacturer of the partly completed machine we declare that:

- The specified Air motor corresponds to the listed essential requirements of the EC Machinery Directive 2006/42/EC
- nce with part B of Annex VII
- The relevant technical documentation is complied in Control of the relevant technical documentation in accordance with a reasonable request by the national authorities part B of Annex VII will be transmitted in response to

Product: Air motors P1 **Directives** Applied and fulfilled essential requirement sulfilled essential **Directives** 2006/42/EC fleturairem 5 nts 3.4, 1.5.3, 1.7.3, 1.7.4 2006/42/EC 1.1.2, 1.1.5, 1.3.4, 1.5.3, 1.7.3, 1.7.4 **Standards** Remark

Standarts 12100 Renthafulfilled **DIN EN ISO 12100** 2011-03 Partl fulfilled

ery must not be put into service until the final machinery into which it is to be This partly complete ared in conformity with the provisions of the Directive 2006/42/EG, were appropriated. incorporates

SUIGNOF

referred to ase long leson be Apperations pended for final assembling and starting up of the seaming with a standards relating to the with appygamentioned directive. Eastetimenthis will die required for compliance purpose other user will have to apply forme Gendana Soverage of the final assembled system according to the shows mentioned raina diractiva and relationed atandard and relating

Additional Information This coverage could only be

Filderstadt, Germany June 2014

tandards

Ing. Franck Roussillon **European Product Manager**

Actuators Business Unit, Pneumatic Division Europe

P1V-S ATEX CE Edition 01

Air Tools

To use in Robots and Automated Machines

Drilling type 80 to 600 Watts Grinding type 90 to 300 Watts Milling type 400 to 1000 Watts

Contents Pa	ge
ntroduction	. 67
Order model code	. 67
Technical data	. 68
Material specification	. 68
Permitted shaft loadings	. 69
Drilling motor with collet 80 watts	. 70
Dimensions	. 70
Drilling motor with collet 170 watts	
Dimensions	. 71
Drilling motor for drill chuck 170 watts	. 72
Dimensions	. 72
Drilling motor with collet 250 watts	. 73
Dimensions	. 73
Drilling motor for drill chuck 250 watts	. 74
Dimensions	. 74
Drilling motor for drill chuck 400 watts	. 75
Dimensions	. 75
Drilling motor for drill chuck 600 watts	. 76
Dimensions	. 76
Mounting for drilling motors	. 77
Grinding motor with collet 90 watts	
Grinding motor with collet 150 watts	
Grinding motor with collet 250 watts	
Grinding motor with collet 300 watts	. 79
Milling motor with collet 400 watts	
Milling motor with collet 500 watts	
Milling motor with collet 700 watts	
Milling motor with collet 1000 watts	
Dimensions	. 81
Lubrication and service life	. 82

Introduction

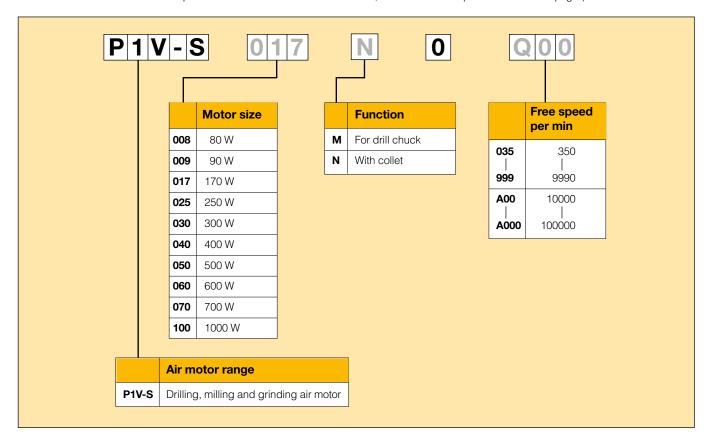
A large number of drilling motors, milling motors and grinding motors have been developed using the P1V-S as the base motor in order to make it easier to install air motors in machining applications. These motors are all equipped with standard vanes for intermittent lubrication-free operation, although it is recommended to use oil mist if you are planning to operate them for extended periods.

NOTE! These motors are not made of 100% stainless steel.

Drilling motors are available with power ratings of 80, 170, 250, 400 and 600 Watts, and several different speeds for the machining of a range of materials. They can be fitted with collet chucks, drill chucks and quick-release chucks. Many of them also have accessories allowing the exhaust air to be removed.

The milling motor, with a power rating of 400 Watts, runs at a relatively high speed, and is fitted with a collet chuck for a shaft diameter of 8 mm. It is equipped with strong bearings able to handle greater shear forces on the spindle.

The grinding motor, with a power rating of 200 Watts, is fitted with a collet chuck for a shaft diameter of 8 mm and runs at a relatively high speed. It is equipped with strong bearings able to handle greater shear forces on the spindle.


The design principle of the 90 Watt grinding motor is different from the others. The turbine principle means that high speeds are possible without the need for lubrication.

Feed movement in drilling, milling and grinding motors

A slow and even feed movement is necessary in machining applications. During drilling, the feed must not uncontrollably speed up once the drill breaks through the material. One good way of solving the problem is to use a pneumatic cylinder for the feed, which is able to provide force during drilling and a rapid approach before the actual drilling phase. Feed during the drilling phase is controlled using a hydraulic brake cylinder (HYDROCHECK) fitted in parallel with the pneumatic cylinder. This provides even, slow and safe feed movement, without the risk of the uncontrolled feed described above.

Order Code Key

(This model code can not be used for creating new part numbers. All possible combinations between motor size, function and free speed are in the next pages).

Technical data (all air motors are non reversible, right rotation only)

Air motor size & type	P1V- S008	P1V- S017	P1V- S025	P1V- S040	P1V- S060	P1V- S009*	P1V- S015	P1V- S025	P1V- S030	P1V- S040	P1V- S050	P1V- S070	P1V- S100
Air motor type			Drilling				Grin	ding			Mil	ling	
Nominal power (watts)	80	170	250	400	600	90	150	250	300	400	500	700	1000
Working pressure (bar)							3 to 7						
Working temperature (°C)						-2	0 to +1	10					
Ambient temperature (°C)						-2	0 to +1	10					
Air flow required (NI/min)	230	300	350	420	850	120	300	350	380	420	700	900	1100
Min pipe ID, inlet (mm)	4	6	6	10	12	4	6	6	6	10	10	10	10
Min pipe ID, outlet (mm)	4	6	6	10	12	4	6	6	6	10	10	10	10
	•	Choice	of trea	tment		comme 0.8 bar			_	min) at	p1 7.5	bar and	t
	260	340	400	500	950	140	340	400	440	500	800	1020	1250
		Choic	e of val	ve: rec	ommer	nded m	in nom	inal air	flow (I/	min) at	p16b	ar and	
							oressur	e drop					
	290	380	450	580	1050	160	380	450	510	580	900	1140	1400
Medium			40	Oµm filte	ered, oil	mist or	dry unlu	ubricate	d comp	ressed a	air		
Oil free operation, indoor					ISC	08573-1	l purity	class 3.	4.1				
Oil free operation, outdoor	ISO8573-1 purity class 1.2.1												
Oil operation	1-2 drop per cube meter, ISO8573-1 purity class 35												
Recommended oil				Fo	odstuff	s indust	ry Klübe	er oil 4 L	JH1- 32	N			
Sound level free outlet (dB(A))	-	-	-	-	-	-	-	-	-	-	-	-	-

Note: sound levels are measured at free speed with the measuring instrument positioned 1 meter away from the air motor at an height of 1 meter.

94

76

72

73

76

75

73

80

85

71

74

70

76

Table and diagram data

With outlet silencer (dB(A))

Exhaust air removed with

pipes to another room

All technical data are based on a working pressure of 6 bar and with oil. Oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

75

73

Material specification

Air motor size	P1V- S008	P1V- S017	P1V- S025	P1V- S040	P1V- S060	P1V- S009*	P1V- S015	P1V- S025	P1V- S030	P1V- S040	P1V- S050	P1V- S070	P1V- S100
Air motor type			Drilling				Grin	ding			Mil	ling	
Housing	Stainless steel X12Cr13	High grade steel (not stainless)		Stainless eel X12Cr		High grade steel (not stainless) Stainless steel X12Cr13							
Shaft, collet					Ha	rdened s	steel (no	t stainles	ss)				
Shaft for drill chuck				Н	ardened	and tem	pered s	teel (not	stainless	3)			
Collet				Н	ardened	and tem	pered s	teel (not	stainless	3)			
All internal parts					Hig	h grade	steel (no	t stainle	ss)				
Accessories				S	urface tr	eated st	eel, plas	tic and a	lluminiun	n			
Accessories						P1V Dril	ling air	motors					
Flange bracket		Stainless steel											
Foot bracket	Stainless steel												
Screws for the mountings						Stainles	ss steel [DIN A2					

^{*} Un lubricated for grinding air motor P1V-S009.

Permitted shaft loadings

Drilling, milling and grinding motors

Max. permitted load on output shaft for motors (based on 10 000 000 rpm at input shaft with 90 % probable service life for ball bearings).

Drilling motors with collet

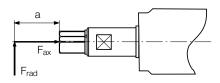
Order code	Fax [N]	Frad [N]	a [mm]
P1V-S008N0***	200	75	25
P1V-S017N0***	380	50	25
P1V-S025N0***	750	220	25

Grinding motors with collet

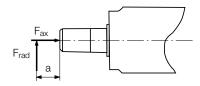
Order code	Fax [N]	Frad [N]	a [mm]
P1V-S009N0A000	15	30	25
P1V-S015N0AQ0	15	30	25
P1V-S025N0Z00	25	50	25
P1V-S030N0***	20	40	25

Milling motors with collet

Order code	Fax [N]	Frad [N]	a [mm]
P1V-S040N0L00	750	150	25
P1V-S050N0L00	25	50	25
F 14-5050110E00	23	30	20
P1V-S070N0N00	40	90	25
P1V-S100N0F30	55	120	25

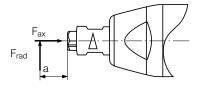

Frad = Radial loading (N) Fax = Axial loading (N)

a = distance from shaft's end (mm)

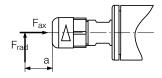

Drilling motors for drill chuck

Order code	Fax [N]	Frad [N]	a [mm]
P1V-S017M0***	380	35	60
P1V-S025M0***	750	150	70
P1V-S040M0***	750	150	70
P1V-S060M0350	1100	150	80
P1V-S060M0270	1100	150	80
P1V-S060M0170	1100	150	80
P1V-S060M0063	1100	265	80
P1V-S060M0048	1100	265	80
P1V-S060M0030	1100	265	80
P1V-S060M0015	1100	150	80

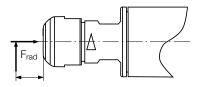
Collet



Drill chuck



Load on output shaft for drilling, milling and grinding motors.


Collet

Collet

Collet

Drilling motor with collet P1V-S008N

Our smallest and most versatile drilling motor for small-scale drilling operations.

The standard collet chuck is for 3 mm shaft diameter.

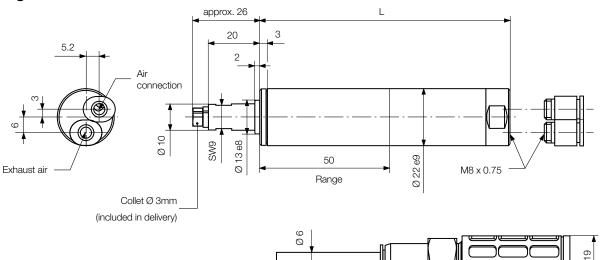
For other diameters, select a different collet chuck as an accessory.

The motor has a port for a 6 mm hose to remove the exhaust air to a silencer.

Note! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

Data for drilling motor with collet P1V-S008N

Max power	Free speed	Version	Drilling in steel	Drilling in aluminium	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm		mm	mm	l/s		mm	Kg	
0,080	22000	Collet 3 mm	-	3	3,8	M8 x 0,75*	4	0,20	P1V-S008N0N00
0,080	6000	Collet 3 mm	3	3	3,8	M8 x 0,75*	4	0,20	P1V-S008N0600
0,080	1900	Collet 3 mm	3	3	3,8	M8 x 0,75*	4	0,22	P1V-S008N0190
0,080	1300	Collet 3 mm	3	3	3,8	M8 x 0,75*	4	0,22	P1V-S008N0130


^{* 2} push in nipples for plastic pipe Ø6/4 supplied

Accessories for drilling motor with collet P1V-S008N

Name	Order code
Collet Collet Ø2 mm	P1V-6/314693
Collet Ø3 mm the motor	Included with
Collet Ø3/32"	P1V-6/314694
Collet Ø1/8"	P1V-6/314407

Dimensions (mm)

Drilling motor with collet P1V-S008N

	А	В
P1V-S008N0N00, P1V-S008N0600	98	96
P1V-S008N0190, P1V-S008N0130	107	105

Drilling motor with collet P1V-S017N

A small drilling motor for small-scale, lighter drilling operations.

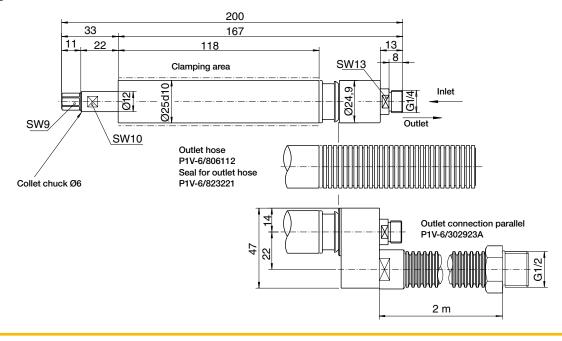
The standard collet chuck is for 6 mm shaft diameter.

For other diameters, select a different collet chuck as an accessory.

The motor has a built-in silencer for exhaust air. If lower noise levels are required, or if you want the exhaust air to be collected, the relevant accessories are available.

Note! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

Data for drilling motor with collet P1V-S017N


Max power	Free speed	Version	Drilling in steel	Drilling in aluminium	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm		mm	mm	l/s		mm	Kg	
0,170	24000	Collet 6 mm	-	4	5,0	G1/40	6	0,38	P1V-S017N0Q00
0,170	6000	Collet 6 mm	3	5	5,0	G1/40	6	0,38	P1V-S017N0600
0,170	4000	Collet 6 mm	4	6	5,0	G1/40	6	0,38	P1V-S017N0400
0,170	1500	Collet 6 mm	4	6	5,0	G1/40	6	0,43	P1V-S017N0150
0,170	1000	Collet 6 mm	4	6	5,0	G1/40	6	0,43	P1V-S017N0100
0,170	660	Collet 6 mm	4	6	5,0	G1/40	6	0,43	P1V-S017N0066

Accessories for drilling motor with collet P1V-S017N

	Name	Order code
Collet		
	Collet Ø3 mm	P1V-6/312681
	Collet Ø4 mm	P1V-6/312684
	Collet Ø5 mm	P1V-6/312686
	Collet Ø6 mm the motor	Included with
	Collet Ø1/8"	P1V-6/312682
	Collet Ø1/4"	P1V-6/312689
	Other accessories	
	Outlet hose	P1V-6/806112
	Seal for outlet hose	P1V-6/823221
	Outlet connection parallel	P1V-6/302923A

Dimensions (mm)

Drilling motor with collet P1V-S017N

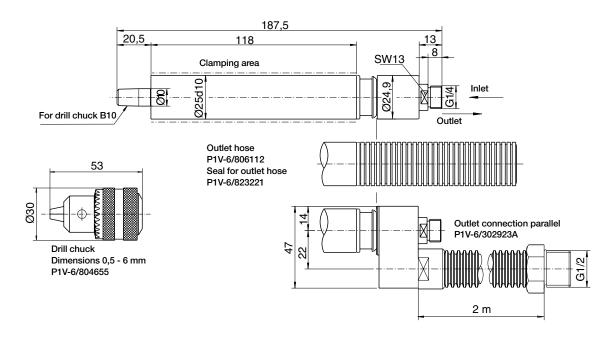
Drilling motor for drill chuck P1V-S017M

A small drilling motor for small-scale, lighter drilling operations. Select drill chucks as accessories.

The motor has a built-in silencer for exhaust air. If lower noise levels are required, or if you want the exhaust air to be collected, the relevant accessories are available.

Note! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

Data for drilling motor for drill chuck P1V-S017M


Max power	Free speed	Version	Drilling in steel	Drilling in aluminium	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm		mm	mm	l/s		mm	Kg	
0,170	6000	For drill chuck B10	3	5	5,0	G1/40	6	0,38	P1V-S017M0600
0,170	4000	For drill chuck B10	4	6	5,0	G1/4o	6	0,38	P1V-S017M0400
0,170	1500	For drill chuck B10	4	6	5,0	G1/40	6	0,43	P1V-S017M0150
0,170	1000	For drill chuck B10	4	6	5,0	G1/4o	6	0,43	P1V-S017M0100
0,170	660	For drill chuck B10	4	6	5,0	G1/40	6	0,43	P1V-S017M0066

Accessories for drilling motor for drill chuck P1V-S017M

Name	Order code
Standard drill chuck Diameters 0,5 – 6 mm/B10	P1V-6/804655
Other accessories Outlet hose	P1V-6/806112
Seal for outlet hose	P1V-6/823221
Outlet connection parallel	P1V-6/302923A

Dimensions (mm)

Drilling motor for drill chuck P1V-S017M

Drilling motor with collet P1V-S025N

A small drilling motor for moderately heavy drilling operations.

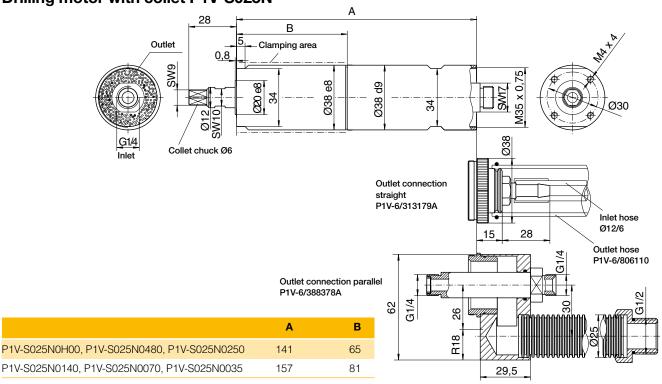
The standard collet chuck is for 6 mm shaft diameter.

For other diameters, select a different collet chuck as an accessory.

The motor has a built-in silencer for exhaust air. If lower noise levels are required, or if you want the exhaust air to be collected, the relevant accessories are available.

Note! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

Data for drilling motor with collet P1V-S025N


Max power	r Free speed	Version	Drilling in steel	Drilling in aluminium	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm		mm	mm	l/s		mm	Kg	
0,250	17000	Collet 6 mm	-	6	6,3	G1/40	6	0,80	P1V-S025N0H00
0,250	4800	Collet 6 mm	4	6	6,3	G1/40	6	0,80	P1V-S025N0480
0,250	2500	Collet 6 mm	6	6	6,3	G1/40	6	0,80	P1V-S025N0250
0,250	1400	Collet 6 mm	6	6	6,3	G1/4o	6	0,90	P1V-S025N0140
0,250	700	Collet 6 mm	6	-	6,3	G1/40	6	0,90	P1V-S025N0070
0,250	350	Collet 6 mm	6	-	6,3	G1/4o	6	0,90	P1V-S025N0035

Accessories for drilling motor with collet P1V-S025N

Name	Order code
Collet	
Collet Ø3 mm	P1V-6/312681
Collet Ø4 mm	P1V-6/312684
Collet Ø5 mm	P1V-6/312686
Collet Ø6 mm	Included with the motor
Collet Ø1/8"	P1V-6/312682
Collet Ø1/4"	P1V-6/312689
Other accessories	
Outlet connection straight	P1V-6/3131179A
Outlet hose Ø23 x 28 mm 0,75 m long	P1V-6/806110
Outlet connection parallel	P1V-6/388378A

Dimensions (mm)

Drilling motor with collet P1V-S025N

Drilling motor for drill chuck P1V-S025M

A small drilling motor for moderately heavy drilling operations.

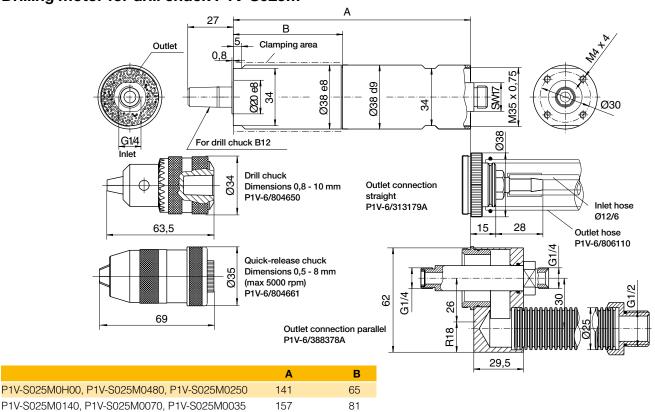
The standard collet chuck is for 6 mm shaft diameter.

For other diameters, select a different collet chuck as an accessory.

The motor has a built-in silencer for exhaust air. If lower noise levels are required, or if you want the exhaust air to be collected, the relevant accessories are available.

Note! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

Data for drilling motor for drill chuck P1V-S025M


Max power	Free speed	Version	Drilling in steel	Drilling in aluminium	Air con- sumption at	Conn.	Min pipe ID	Weight	Order code
kW	rpm		mm	mm	max power l/s		mm	Kg	
0,250	17000	For drill chuck B12	-	6	6,3	G1/40	6	0,80	P1V-S025M0H00
0,250	4800	For drill chuck B12	4	6	6,3	G1/40	6	0,80	P1V-S025M0480
0,250	2500	For drill chuck B12	6	8	6,3	G1/40	6	0,80	P1V-S025M0250
0,250	1400	For drill chuck B12	8	10	6,3	G1/40	6	0,80	P1V-S025M0140
0,250	700	For drill chuck B12	10	-	6,3	G1/40	6	0,80	P1V-S025M0070
0,250	350	For drill chuck B12	10	-	6,3	G1/40	6	0,80	P1V-S025M0035

Accessories for drilling motor for drill chuck P1V-S025M

Name	Order code
Standard drill chuck	D4V 0/004050
Diameters 0,8 - 10 mm/B12	P1V-6/804650
Quick release chuck Diameters 0,5 - 8 mm/B12	P1V-6/804661
Other accessories	
Outlet connection straight	P1V-6/3131179A
Collet Ø1/4"	P1V-6/312689
Outlet hose Ø23 x 28 mm 0,75 m long	P1V-6/806110
Outlet connection parallel	P1V-6/388378A

Dimensions (mm)

Drilling motor for drill chuck P1V-S025M

Drilling motor for drill chuck P1V-S040M

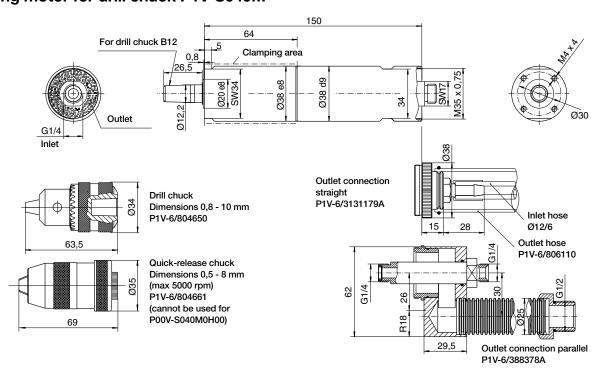
Our large drilling motor is used for small-scale heavy drilling operations requiring considerable feed force.

Select drill chucks or quick-release chucks as accessories as necessary.

The motor has a built-in silencer for exhaust air. If lower noise levels are required, or if you want the exhaust air to be collected, the relevant accessories are available.

Note! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

Data for drilling motor for drill chuck P1V-S040M


Max power	Free speed	Version	Drilling in steel	Drilling in aluminium	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm		mm	mm	I/s		mm	Kg	
0,400	17000	For drill chuck B12	-	6	8,0	G1/40	6	0,82	P1V-S040M0H00
0,400	4800	For drill chuck B12	4	6	8,0	G1/40	6	0,82	P1V-S040M0480
0,400	2500	For drill chuck B12	6	8	8,0	G1/40	6	0,82	P1V-S040M0250
0,400	1400	For drill chuck B12	8	10	8,0	G1/40	6	0,92	P1V-S040M0140

Accessories for drilling motor for drill chuck P1V-S040M

Name	Order code
Standard drill chuck Diameters 0,8 – 10 mm/B12	P1V-6/804650
Quick-release chuck Diameters 0,5 – 8 mm/B12 (Cannot be used for drilling motor P1V-S040M0H00)	P1V-6/804661
Other accessories Outlet connection straight	P1V-6/3131179A
Outlet hose Ø23 x 28 mm 0,75 m long	P1V-6/806110
Outlet connection parallel	P1V-6/388378A

Dimensions (mm)

Drilling motor for drill chuck P1V-S040M

Drilling motor for drill chuck P1V-S060M

Our large drilling motor is used for small-scale heavy drilling operations requiring considerable feed force.

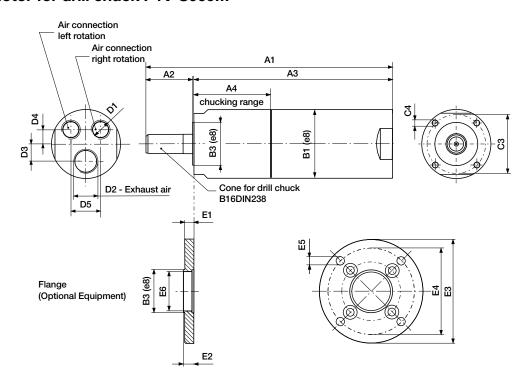
Select drill chucks or quick-release chucks as accessories as necessary.

The motor has a built-in silencer for exhaust air. If lower noise levels are required, or if you want the exhaust air to be collected, the relevant accessories are available.

Note! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are

Data for drilling motor for drill chuck P1V-S060M

-10 to 15% lower. Data tolerance accuracy -+10%


Max power	Free speed	Version	Drilling in steel	Drilling in aluminium	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm		mm	mm	l/s		mm	Kg	
0,600	3500	For drill chuck B16	3	3	14,2	G3/8	12	2,1	P1V-S060M0350
0,600	2700	For drill chuck B16	5	5	14,2	G3/8	12	2,1	P1V-S060M0270
0,600	1700	For drill chuck B16	8	8	14,2	G3/8	12	2,1	P1V-S060M0170
0,600	630	For drill chuck B16	13	13	14,2	G3/8	12	2,2	P1V-S060M0063
0,600	480	For drill chuck B16	13	13	14,2	G3/8	12	2,3	P1V-S060M0048
0,600	300	For drill chuck B16	13	13	14,2	G3/8	12	2,3	P1V-S060M0030
0,600	150	For drill chuck B16	13	13	14,2	G3/8	12	2,3	P1V-S060M0015

Accessories for drilling motor for drill chuck P1V-S060M

Name	Order code
Standard drill chuck Diameters 1 – 13 mm/B16	P1V-6/804652
Quick-release chuck Diameters 1 – 13 mm/B16	P1V-6/804663

Dimensions (mm)

Drilling motor for drill chuck P1V-S060M

Mountings for drilling P1V-S air motors

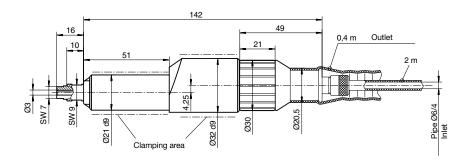
Туре	For drilling motor	Weight Kg	Order code
Flange			
	P1V-S008	0,04	P1V-S4008B
The state of the s	P1V-S025	0,09	P1V-S4020B
	P1V-S040	0,12	P1V-S4030B
	P1V-S060	0,25	P1V-S4060B
Foot bracket			
Par -	P1V-S008	0,08	P1V-S4008F
	P1V-S025	0,11	P1V-S4020F
3	P1V-S040	0,11	P1V-S4030F
	P1V-S060	0,30	P1V-S4060F

All brackets supplied with fastening screws for the motor.

Grinding gear motor with collet (no vanes) P1V-S009N

The grinding motor is used for small-scale point grinding and small-scale milling where the high speed is an advantage. It has proved to be very useful for drilling small holes and milling thin slits in PCBs in the electronics industry. In this application, the high speed means that the holes and slits are free of burrs on the underside.

Note! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%



Data for grinding gear motor with collet (no vanes) 90 W

Max power	Free speed	Version	Point grinding diam. max	Milling diam. max	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm		mm	mm	I/s		mm	Kg	
0,090	100000	Collet 3 mm	5	3	2,0	Pipe 6/4	4	0,3	P1V-S009N0A000

Dimensions (mm)

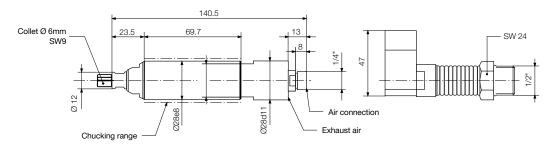
Grinding motor P1V-S009N0A000

Grinding motors with collets 150, 250 & 300 W

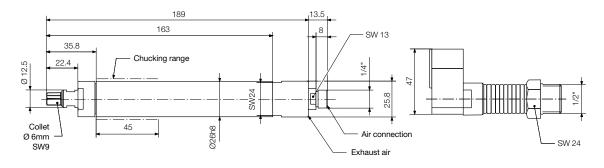
This grinding motor is used when larger-scale point grinding is required. The motor can also be used for light milling operations.

The motor has a built-in silencer for exhaust air.

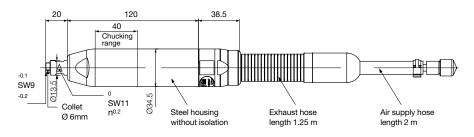
Note! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%



Data for grinding motors with collets 150, 250 & 300 W


Max power	Free speed	Version	Point grinding diam. max	Milling diam. max	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm		mm	mm	l/s		mm	Kg	
0,150	47000	Collet 6 mm	-	-	Χ	G1/40	6	0,36	P1V-S015N0AQ0
0,250	32000	Collet 6 mm	-	-	Χ	G1/40	6	0,80	P1V-S025N0Z00
0,300	30000	Collet 6 mm	-	-	X	G1/40	6	0,70	P1V-S030N0X00
0,300	45000	Collet 6 mm	-	-	X	-	6	0,70	P1V-S030N0AN0

Dimensions (mm)


Grinding motor P1V-S015N0AQ0

Grinding motor P1V-S025N0Z00

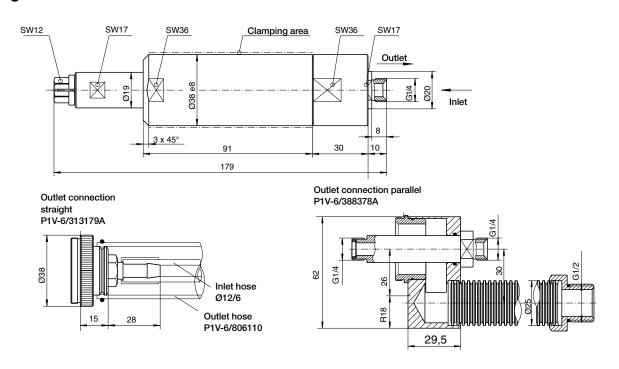
Grinding motor P1V-S030N0X00 Grinding motor P1V-S030N0AN0

Milling motor with collet P1V-S040N

This motor was designed for milling plastic components, but it can also be used for milling other materials. The motor has a built-in silencer for exhaust air. If lower noise levels are required, or if you want the exhaust air to be collected, the relevant accessories are available.

Note! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 20% lower. Data tolerance accuracy -+10%

Data for milling motor with collet P1V-S040N


Max power	Free speed	Version	Milling of plastic mill dia.	Milling of wood mill dia.	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm		max mm	max mm	l/s		mm	Kg	
0,400	20000	Collet 8mm	8	10	5,0	G1/40	6	0,80	P1V-S040N0L00

Accessories for milling motor with collet P1V-S040N

Name	Order code
Collet	D.V. 0/0.4000
Collet Ø3 mm	P1V-6/312690
Collet Ø4 mm	P1V-6/312692
Collet Ø5 mm	P1V-6/312693
Collet Ø6 mm	P1V-6/312694
Collet Ø8 mm	Included with the motor
Collet Ø1/8"	P1V-6/312691
Collet Ø1/4"	P1V-6/312695
Other accessories	
Outlet connection straight	P1V-6/3131179A
Outlet hose Ø23 x 28 mm 0,75 m long	P1V-6/806110
Outlet connection parallel	P1V-6/388378A

Dimensions (mm)

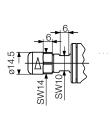
Milling motor with collet P1V-S040N0L00

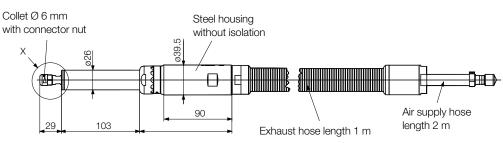
Milling motors with collets 500, 700 & 1000 W

This motor was designed for milling plastic components, but it can also be used for milling other materials.

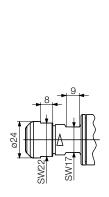
The motor has a built-in silencer for exhaust air. If lower noise levels are required, or if you want the exhaust air to be collected, the relevant accessories are available.

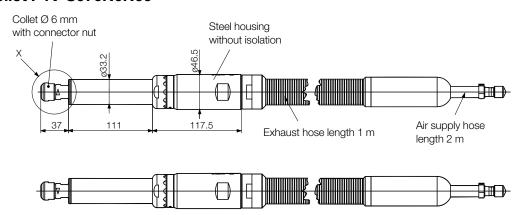
Note! All technical data are based on a working pressure of 6 bar and with oil. For oil-free performances are -10 to 15% lower. Data tolerance accuracy -+10%

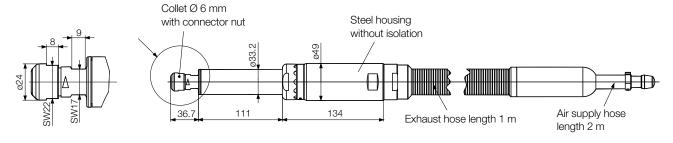



Data for milling motors with collets 500, 700 & 1000 W

Max power	Free speed	Version	Air con- sumption at max power	Conn.	Min pipe ID	Weight	Order code
kW	rpm		l/s		mm	Kg	
0,500	20000	Collet 8 mm	15,0	-	10	1,20	P1V-S050N0L00
0,700	19000	Collet 8 mm	15,0	-	10	1,70	P1V-S070N0N00
1,000	15300	Collet 8 mm	16,7	-	12	1,70	P1V-S100N0F30


Dimensions (mm)


Milling motor with collet P1V-S050N0L00



Milling motor with collet P1V-S070N0N00

Milling motor with collet P1V-S100N0F30

Lubrication and service life

The first service is due after approximately 500 hours of operation. After the first service, the service interval is determined by the degree of vane wear*. The table below shows new dimensions and the minimum dimensions of worn vanes.

Drilling motors	New dimensions X (mm)	Minimum dimensions X (mm)
P1V-S008	4,3	4,0
P1V-S017	4,2	3,3
P1V-S025	6,5	5,8
P1V-S040	6,8	6,0

Milling motors	New dimensions X (mm)	Minimum dimensions X (mm)
P1V-S040	X	X
P1V-S050	X	X
P1V-S070	X	X
P1V-S100	Χ	X

Grinding motors	New dimensions X (mm)	Minimum dimensions X (mm)
P1V-S009	No vanes	No vanes
P1V-S015	X	X
P1V-S025	X	X
P1V-S030	X	X

* The specified hours of operation apply when the motor is running at the speed corresponding to maximum power (load speed).

This is approximately half free speed. If the motor operates at higher speeds, the service interval is shorter. If the motor operates at lower speeds, the service interval is longer.

Service kits for drilling, milling and grinding motors

The following kits are available for the motors, consisting of vanes, (springs), silencers, O-rings, seals and 50 g of grease: (USDA-H1 approved)

Service kits

For drilling motors	Order code
P1V-S008N	P1V-6/446085A
P1V-S017N/M	P1V-6/446086A
P1V-S025N/M	P1V-6/446087A
P1V-S040M	P1V-6/446088A
P1V-S060M0350	9121720604
P1V-S060M0270	9121720604
P1V-S060M0170	9121720604
P1V-S060M0063	9121720604
P1V-S060M0048	9121720605
P1V-S060M0030	9121720605
P1V-S060M0015	9121720605

For milling motors	Order code
P1V-S040N	P1V-6/446088A
P1V-S050N	P1V-6/4405021B
P1V-S070N	P1V-6/4405021C
P1V-S100N	P1V-6/4405021D

For grinding motors	Order code
P1V-S009N	Service free
P1V-S015N	P1V-6/4449221A
P1V-S025N	P1V-6/4449211A
P1V-S030N	P1V-6/4405021B

Parker Worldwide

Europe, Middle East, Africa

AE – United Arab Emirates,

Dubai

Tel: +971 4 8127100 parker.me@parker.com

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt

Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ – Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BG - Bulgaria, Sofia Tel: +359 2 980 1344 parker.bulgaria@parker.com

BY - Belarus, Minsk Tel: +48 (0)22 573 24 00 parker.poland@parker.com

CH – Switzerland, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ - Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE – Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI - Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR - France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR – Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com **HU - Hungary,** Budaörs Tel: +36 23 885 470 parker.hungary@parker.com

IE - Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT - Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ - Kazakhstan, Almaty Tel: +7 7273 561 000 parker.easteurope@parker.com

NL - The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO - Norway, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL - Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT - Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO - Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE - Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK - Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR – Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA - Ukraine, Kiev Tel: +48 (0)22 573 24 00 parker.poland@parker.com

UK - United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com **ZA – South Africa,** Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

North America

CA – Canada, Milton, Ontario Tel: +1 905 693 3000

US – USA, Cleveland Tel: +1 216 896 3000

Asia Pacific

AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777

CN - China, Shanghai Tel: +86 21 2899 5000

HK – Hong Kong Tel: +852 2428 8008

IN - India, Mumbai Tel: +91 22 6513 7081-85

JP – Japan, Tokyo Tel: +81 (0)3 6408 3901

KR - South Korea, Seoul Tel: +82 2 559 0400

MY - Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ – New Zealand, Mt Wellington

Tel: +64 9 574 1744

SG - Singapore Tel: +65 6887 6300

TH - Thailand, Bangkok Tel: +662 186 7000

TW - Taiwan, Taipei Tel: +886 2 2298 8987

South America

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

BR - Brazil, Sao Jose dos Campos Tel: +55 800 727 5374

CL - Chile, Santiago Tel: +56 2 623 1216

MX - Mexico, Toluca Tel: +52 72 2275 4200

European Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

© 2015 Parker Hannifin Corporation. All rights reserved.

Catalogue PDE2554TCUK - V4 - February 2015

Parker Hannifin Ltd.

Tachbrook Park Drive Tachbrook Park, Warwick CV34 6TU United Kingdom

Tel.: +44 (0) 1926 317 878 Fax: +44 (0) 1926 317 855 parker.uk@parker.com www.parker.com

Your local authorized Parker distributor